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Abstract

Stochastic simulation models are generative
models that mimic complex systems to help
with decision-making. The reliability of these
models heavily depends on well-calibrated in-
put model parameters. However, in many
practical scenarios, only output-level data are
available to learn the input model parame-
ters, which is challenging due to the often
intractable likelihood of the stochastic simula-
tion model. Moreover, stochastic simulation
models are frequently inexact, with discrepan-
cies between the model and the target system.
No existing methods can effectively learn and
quantify the uncertainties of input parame-
ters using only output-level data. In this pa-
per, we propose to learn differentiable input
parameters of stochastic simulation models
using output-level data via kernel score mini-
mization with stochastic gradient descent. We
quantify the uncertainties of the learned input
parameters using a frequentist confidence set
procedure based on a new asymptotic normal-
ity result that accounts for model inexactness.
The proposed method is evaluated on exact
and inexact G/G/1 queueing models as well
as a stochastic volatility model.

1 INTRODUCTION

Stochastic simulation models play a crucial role in
diverse domains, including manufacturing, supply
chain management, cloud computing, and epidemiol-
ogy. They serve as powerful tools for mimicking com-
plex systems that are costly or impractical to study
directly. Examples of stochastic simulation models in-
clude queueing models (Pan et al., 2021) (Section A.1.1
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of the Supplementary Material introduces queues), dig-
ital twins (Biller et al., 2022), stochastic inventory
models (Zhang et al., 2021), and compartmental mod-
els (Frazier et al., 2022). These generative models
generate random samples to help with decision-making.
For instance, queueing models for the waiting lines of
cloud computing systems help develop strategies to
reduce customer waiting times.

The output distribution of a stochastic simulation
model is determined by a set of unknown input values.
We term this set of input values the simulation param-
eter. Calibrating the simulation parameter to align
the simulation withth the target system is key to the
reliability of the simulation model. Typically, this cali-
bration is performed using input-level data or domain
knowledge of the simulation parameter, termed input
modeling (Barton et al., 2022). In practical scenarios
where only output-level data are available, the process
of learning the input simulation parameter is termed
stochastic simulation calibration (Kleijnen, 1995).

Existing methods for stochastic simulation calibration,
such as likelihood-free inference techniques (Cranmer
et al., 2020), often assume that the simulation model is
exact, i.e., there exists a simulation parameter that per-
fectly aligns the model output with the target system.
However, stochastic simulation models are frequently
inexact in reality due to the complexity of real-world
target systems. No existing frequentist methods can
effectively learn and quantify the uncertainties of input
parameters using only output-level data under model
inexactness. We address this challenge by exhibiting a
frequentist learning and confidence set procedure based
on kernel score (Dawid, 2007) minimization.

Notation and Setting Stochastic simulation cal-
ibration leverages a set of multi-dimensional output-
level data X1, . . . , Xm from the target system, pre-
sumed drawn independently from the target system
output P⋆, i.e. X1, . . . , Xm

i.i.d.∼ P⋆. The simulation
parameter θ in some parameter space Θ ⊂ Rp deter-
mines the output distribution of the stochastic simula-
tion model denoted Pθ. When the probability density
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function fθ exists, the maximum likelihood estimation
(MLE) is the standard approach to estimate θ: θ̂MLE

m ∈
argmaxθ∈Θ

1
m

∑m
i=1 log fθ(Xi). MLE is an instance of

the optimum score estimation (Gneiting and Raftery,
2007): θ̂m ∈ argminθ∈Θ Lm(θ) = 1

m

∑m
i=1 S (Pθ, Xi) ,

where S(·, ·) is a strictly proper scoring rule (Gneit-
ing and Raftery, 2007), Lm(θ) is the optimum score,
and θ̂m is the optimum score estimator. The negative
log-likelihood − log fθ(x) is an example of a strictly
proper scoring rule (logarithmic score (Good, 1952))
that corresponds to MLE. Minimizing the optimum
score Lm(θ) amounts to minimizing a statistical dis-
tance induced by S between Pθ and the empirical mea-
sure P̂m

⋆ = 1
m

∑m
i=1 δXi

, where δ denotes the Dirac
delta function. Under model inexactness, optimum
score minimization aims to find the best possible θ that
minimizes the statistical distance between Pθ and P̂m

⋆ .
The optimum score estimator is hence also referred to
as the minimum distance estimator (Basu et al., 2011).

Despite the asymptotic properties of optimum score
estimators, such as MLE, the likelihood-free nature of
stochastic simulation models hinders their direct appli-
cation for simulation parameter estimation. While it is
feasible to simulate realizations from Pθ, evaluating Pθ

is usually impractical due to the complex probabilistic
mapping between θ and Pθ. We denote the simulated
sample from Pθ by Y1(θ), . . . , Yn(θ)

i.i.d.∼ Pθ. Consider
a queueing model where the service time distributions
for servers are parameterized by unknown service rates,
forming the simulation parameter θ. It is feasible to
simulate from the queueing model to obtain a random
sample for any θ, such as generating a sample of the
average waiting times for customers. However, deriving
an expression for Pθ is analytically challenging. The
likelihood of the model output Pθ is hence inaccessible.
Stochastic simulation models can thus be viewed as
intractable generative models analogous to deep gener-
ative models such as generative adversarial networks
(GANs) (Goodfellow et al., 2014), diffusion models
(Sohl-Dickstein et al., 2015), and variational autoen-
coders (VAEs) (Kingma and Welling, 2014). However,
unlike deep generative models, stochastic simulation
models are often considered inexact, with an inherent
model discrepancy where the simulation does not match
the target system under any parameter. No existing
frequentist methods are well-equipped for stochastic
simulation calibration under model inexactness. We
further discuss the key differences between deep gen-
erative models and stochastic simulation models in
Section A.1.4 of the Supplementary Material.

We address two distinct types of model discrepancy in
this work: model contamination (correct model with
contaminated data) and model inexactness (uncontam-
inated data with misspecified model). Our primary

focus is on the latter case, where there exists an inher-
ent structural mismatch between the simulation model
and the target system. This is distinct from contamina-
tion models where data is noisy but the model is well-
specified. Our experiments in Section 3 with varying
shape parameters for service time distributions provide
a clear measure of model inexactness—smaller values
indicate greater structural discrepancy between the
simulation and target system. Section A.1.3 presents
a detailed comparison between model contamination
and inexactness.

Contribution and Outline In this paper, we pro-
pose the first frequentist method to learn and quantify
the uncertainties of a differentiable simulation param-
eter with output-level data under model inexactness.
Our method, termed the kernel optimum score estima-
tion, leverages kernel score minimization to estimate
the simulation parameter. Kernel score is a strictly
proper scoring rule that induces the maximum mean
discrepancy (MMD) (Gretton et al., 2012). Notably,
kernel score gradients can be unbiasedly estimated with
U-statistic approximations using simulated samples, al-
lowing stochastic gradient descent (SGD) optimization.
Our proposed learning and confidence set procedure
hence applies to learning and quantifying uncertainties
of a differentiable simulation parameter. We validate
the conditions outlined in Bińkowski et al. (2018) to
ensure the unbiasedness of U-statistic gradient esti-
mates in the stochastic simulation context, focusing on
the G/G/1 queueing model. We then present the first
asymptotic normality result for the kernel optimum
score estimator under model inexactness. Based on this
result, we propose a novel confidence set procedure for
the simulation parameter. We evaluate the proposed
method on both exact and inexact G/G/1 queueing
models and a stochastic volatility model with higher-
dimensional simulation parameter, demonstrating its
effectiveness in learning and quantifying uncertainties
of a simulation parameter.

Our work differs significantly from both Bayesian ap-
proaches (Pacchiardi et al., 2024) and previous fre-
quentist analyses under model exactness (Briol et al.,
2019). Compared to Bayesian approaches, our asymp-
totic normality result guarantees asymptotically correct
coverage of our confidence sets, while posterior con-
sistency results cannot guarantee proper frequentist
coverage even under ideal conditions. Our theoretical
developments also extend beyond Briol et al. (2019)
in fundamental ways. We establish new asymptotic
theory for model inexactness and prove asymptotic
normality under different regularity conditions, lever-
aging different statistical tools such as the strong law
of large numbers for generalized k-sample U-statistics
(Theorem A.20). Section A.2.4 of the Supplementary
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Material presents a detailed comparison with related
Bayesian and frequentist approaches.

The remainder of the paper is organized as follows.
Section 1.1 concludes the introduction with a literature
review. Section 2 introduces the notions of scoring
rules and kernel optimum score estimation, validates
the unbiasedness of the gradient estimate, demonstrates
the asymptotic normality of kernel optimum score es-
timators, and introduces a confidence set procedure
for the simulation parameter. Section 3 studies the
performance of the proposed method with extensive
simulation experiments. Section 4 concludes the paper.

1.1 Literature Review

Our proposed kernel optimum score estimator is closely
related to several works in the frequentist and Bayesian
literature that leverage MMD or scoring rules. In
the frequentist literature, it is akin to the minimum
MMD estimator for generative models (Briol et al.,
2019; Chérief-Abdellatif and Alquier, 2022), such as
MMD-GANs (Dziugaite et al., 2015). Dziugaite et al.
(2015) propose training generative neural networks with
MMD as the discriminator and utilize SGD for network
training. Bińkowski et al. (2018) provide the regularity
conditions for the unbiasedness of the gradient esti-
mate in the context of deep generative models. Briol
et al. (2019) comprehensively investigate the statis-
tical properties of minimum MMD estimators under
model exactness. Chérief-Abdellatif and Alquier (2022)
further investigate minimum MMD estimators under
data dependence and outliers. Oates et al. (2022) of-
fers the most general conditions for the strong consis-
tency of minimum kernel discrepancy estimators, with
the minimum MMD estimator as a special case. In
the Bayesian literature, several works leverage MMD
(Chérief-Abdellatif and Alquier, 2020) and scoring rules
(Pacchiardi and Dutta, 2021; Pacchiardi et al., 2024)
for generalized Bayesian inference. In particular, Pac-
chiardi et al. (2024) provides a posterior consistency
result similar to our frequentist asymptotic normality
result.

Another primary approach to likelihood-free inference
for simulation models is the approximate Bayesian
computation (ABC) (Beaumont et al., 2002). However,
ABC is not robust to model inexactness. Several works
address this issue by revising the original ABC (Frazier
et al., 2020b,a; Fujisawa et al., 2021), using synthetic
likelihood (Frazier et al., 2021; Frazier and Drovandi,
2021), posterior bootstrap and minimum MMD esti-
mators (Dellaporta et al., 2022), or neural network
approximations of the likelihood (Kelly et al., 2023) or
posterior (Ward et al., 2022; Wehenkel et al., 2024).
These works focus on contamination models where the
data are noisy but the model is well-specified, while

our approach considers the inexact case where the data
is not noisy but the model is misspecified. Moreover,
these works do not assess whether their methods can
produce credible sets with valid coverage. In fact,
Frazier et al. (2020b) demonstrates that under model
inexactness, ABC posteriors can produce credible sets
with arbitrary coverage levels. Another key difference is
that existing works do not specifically consider inexact
queueing models, which are a focus of our study. By ad-
dressing model inexactness in the context of queueing
systems, our work fills an important gap in the litera-
ture and provides a frequentist approach to quantify
the uncertainty of the simulation parameter.

Recent works in simulation-based inference explore al-
ternative approaches to uncertainty quantification for
simulation parameters. WALDO (Masserano et al.,
2022) constructs confidence regions for simulation
parameters by leveraging Wald statistics, offering a
non-asymptotic approach to uncertainty quantification.
Similarly, conformal prediction methods (LeRoy and
Shafer, 2021) provide distribution-free coverage guar-
antees, although their application to stochastic simula-
tors remains relatively unexplored. For handling model
inexactness specifically, Huang et al. (2023) develop
robust statistics using neural networks. In the realm
of amortized inference, researchers propose efficient
methods to address model inexactness through cost es-
timation (Gao et al., 2023) and data-driven calibration
approaches (Wehenkel et al., 2023, 2024).

Our work also relates to existing research in stochastic
operations research. The discrepancy between sim-
ulation model outputs and the target system is tra-
ditionally handled via iterative model validation and
calibration (Kleijnen, 1995; Sargent, 2010). Validation
confirms the simulation’s accuracy by comparing output
data from the target system and the simulation, often
using statistical tests such as the Schruben-Turing test
(Schruben, 1980) and the two-sample mean-difference
test (Balci and Sargent, 1982). Calibration aligns the
simulation with the target system by adjusting param-
eters using data. Existing calibration works investigate
computing bounds on input simulation parameters (Bai
and Lam, 2020), bounds on input-dependent quantities
(Goeva et al., 2019), or learning model discrepancy
(Plumlee and Lam, 2017). Similar to our approach,
Bai and Lam (2020) construct confidence sets for the
simulation parameter via empirical matching between
the simulation and target system output using the
Kolmogorov-Smirnov statistic. However, their method
assumes model exactness, potentially leading to empty
confidence sets in inexact model cases.

Lastly, extensive literature addresses calibration of
deterministic computer models from both Bayesian
(Kennedy and O’Hagan, 2001; Storlie et al., 2015; Plum-
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lee, 2017) and frequentist (Tuo and Wu, 2015, 2016;
Tuo, 2019; Plumlee, 2019) perspectives. However, these
deterministic calibration approaches are not directly
applicable to stochastic simulation calibration, where
both target system and simulation model outputs are
represented by probabilistic measures.

2 METHODOLOGY

2.1 Setting and Formal Model

Scoring Rules and Kernel Score A scoring rule
is a function S(P, x) : P × Rd → R that evaluates
a model based on its distribution P ∈ P and a real-
ization x ∈ Rd of the d-dimensional random variable
X (Gneiting and Raftery, 2007). Set P is the do-
main of the score function such that S(P, x) <∞ for
all P ∈ P and x ∈ Rd. Denoting the distribution
of X by Q ∈ P, the expected score of P under Q
is denoted EX∼QS(P,X). It is assumed throughout
this paper that EX∼QS(P,X) < ∞ for all P,Q ∈ P.
A scoring rule is strictly proper relative to P if and
only if EX∼QS(Q,X) = EX∼QS(P,X) implies P = Q.
The statistical distance that the strictly proper scoring
rule induces is the difference between expected scores,
dS(P,Q) = EX∼Q [S(P,X)− S(Q,X)], termed the di-
vergence function associated with S. When a scoring
rule is strictly proper, dS(P,Q) > 0 for all P ̸= Q.

Examples of strictly proper scoring rules include the
logarithmic score, the energy score (ES) (Székely and
Rizzo, 2013), and the kernel score (KS). The en-
ergy score is defined as: ES(P, x) = EY ∥Y − x∥β −
1
2EY,Y ′ ∥Y − Y ′∥β , where ∥ · ∥ is the Euclidean norm,
β ∈ (0, 2), and Y, Y ′ are identically distributed, in-
dependent random variables with distribution P i.e.
Y, Y ′ i.i.d.∼ P . The energy score is a special case of the
kernel score KS(P, x) = EY,Y ′ [k(Y, Y ′)]−2EY [k(x, Y )],
where k(·, ·) : Rd × Rd → R is a measurable kernel on
Rd, and Y, Y ′ i.i.d.∼ P . The energy score is the ker-
nel score with the Riesz kernel k(x, y) = − 1

2∥x− y∥β .
The kernel score is strictly proper when the kernel k
is characteristic. Examples of characteristic kernels
include the Gaussian kernel k(x, y) = exp

(
−∥x−y∥2

2

2σ

)
,

where σ > 0 is the bandwidth parameter, and ∥ · ∥2
is the Euclidean (L2) distance on Rd, and the Lapla-
cian kernel k(x, y) = exp

(
−∥x−y∥1

σ

)
, where σ > 0

and ∥ · ∥1 is the L1 distance on Rd. While the Riesz
kernel is not characteristic, the fractional Brownian mo-
tion kernel (Sejdinovic et al., 2013) is a characteristic
kernel whose corresponding squared MMD is the en-
ergy distance (see Section A.1.2 of the Supplementary
Material): k(x, y) = 1

2

(
∥x∥β + ∥y∥β − ∥x− y∥β

)
.

Kernel Optimum Score Estimation Given the
output distribution of the stochastic simulation model
Pθ and the output data X1, . . . , Xm

i.i.d.∼ P⋆, re-
call that the optimum score estimator is defined as:
θ̂m ∈ argminθ∈Θ Lm(θ) = 1

m

∑m
i=1 S (Pθ, Xi) , where

S(·, ·) is a strictly proper scoring rule, and Lm(θ) is
the optimum score. Optimum score estimation is chal-
lenging since the output distribution of the stochastic
simulation model Pθ is not directly observable. Instead,
the simulation model output Pθ can only be assessed by
means of the simulated sample Y1(θ), . . . , Yn(θ)

i.i.d.∼ Pθ.
The idea is to pick a good strictly proper scoring rule
that allows for an empirical unbiased approximation of
its optimum score with the simulated sample. To this
end, we propose to use kernel scores:

θ̂KS
m ∈ argmin

θ∈Θ
LKS
m (θ) = EY (θ),Y ′(θ)[k(Y (θ), Y ′(θ))]

− 2

m

m∑
i=1

EY (θ) [k(Y (θ), Xi)] ,

where Y (θ), Y ′(θ)
i.i.d.∼ Pθ. We call θ̂KS

m kernel optimum
score estimator. We term the U-statistic approximation
of the kernel optimum score with the simulated sample
the kernel simulated score:

L̂KS
m,n(θ) =

1

n(n− 1)

∑
1≤i ̸=j≤n

k(Yi(θ), Yj(θ))

− 2

mn

m∑
i=1

n∑
j=1

k(Yj(θ), Xi),

and we call the minimizer θ̂KS
m,n the kernel simulated

score estimator. The gradient of the kernel simulated
score (Dziugaite et al., 2015; Briol et al., 2019) is:

∇θL̂
KS
m,n(θ) =

1

n(n− 1)

∑
1≤i ̸=j≤n

∇θk(Yi(θ), Yj(θ))

− 2

mn

m∑
i=1

n∑
j=1

∇θk(Yj(θ), Xi),

where ∇θ(·) denotes the gradient with respect to θ.

A key requirement of our approach is the differentia-
bility of the simulation parameter θ, which is essential
for both the gradient-based optimization of the kernel
score and the asymptotic properties that underpin our
confidence set procedure. Section 2.2 delves into the
asymptotic properties of the kernel optimum score es-
timator. Briol et al. (2019) presents a generalization
bound for the kernel optimum score estimator when the
kernel k is bounded (Theorem A.18 in Section A.2.2
of the Supplementary Material). The generalization
bound for unbounded kernels such as the Riesz kernel
is still an open problem.



Ziwei Su, Diego Klabjan

Unbiased Gradient Estimation The gradient of
the kernel simulated score is an unbiased estimate of
the gradient of the kernel optimum score under cer-
tain regularity conditions. Bińkowski et al. (2018) first
establishes these conditions for deep generative mod-
els, and we adapt them in the rest of Section 2.1 to
stochastic simulation models. We further validate these
conditions for G/G/1 queueing models in Section A.3.2
of the Supplementary Material. This unbiased gra-
dient estimation relies on the existence of pathwise
derivatives. Section A.3.3 of the Supplementary Mate-
rial discusses connections to infinitesimal perturbation
analysis and alternative approaches for simulation pa-
rameters that lack pathwise differentiability.

We require an alternative representation of the stochas-
tic simulation model output Pθ, referred to as the
‘pushforward’ representation (Bińkowski et al., 2018;
Briol et al., 2019), to facilitate our discussion. Let P be
a Borel probability measure on a measurable space Z,
typically a subspace of Rd or Rd itself. The simulation
model output can be expressed as Pθ = G#

θ P , where
Gθ : Z → Rd is a measurable parametric map, and
G#

θ P is the pushforward of P through Gθ.

In stochastic simulation models, Gθ can be interpreted
as the input model or the deterministic part of the
input-output map, with θ as its (input) simulation pa-
rameter. The pushforward entails simulating n i.i.d.
samples Y1(θ), . . . , Yn(θ)

i.i.d.∼ Pθ by first simulating
n i.i.d. samples Z1, . . . , Zn

i.i.d.∼ P and then setting
Yj(θ) = Gθ(Zj) for j = 1, . . . , n. Function Gθ is usu-
ally a composition of multiple nonparametric compo-
nent functions ϕ1, . . . , ϕi, . . . and parametric compo-
nent functions ψθ,1, . . . , ψθ,j , . . .. For instance, consider
simulating a random sample Y from an exponential
distribution with rate θ denoted Exp(θ) using inverse
transform sampling. We first simulate pseudo-random
number Z ∼ P = U(0, 1), then set Y = Gθ(Z) =

ψθ,1(ϕ1(Z)) =
log(1−Z)

θ , where ϕ1(z) = log(1− z) and
ψθ,1(z) =

z
θ . The reference measure P , as in inverse

transform sampling, is typically the uniform measure
on (0, 1)d, though it can be specified differently based
on requirements. Different choice of P yields different
Gθ. The selection of P hence plays a key role in en-
suring unbiasedness. The unbiased gradient estimation
relies on the following regularity conditions.
Assumption 2.1. 1. EX∥X∥α,EZ∥Z∥α < ∞
for some α ≥ 1. 2. Bounded ker-
nel: There exist constants C0, C1 such
that |k(x, y)| ≤ C0

((
∥x∥2 + ∥y∥2

)α/2
+ 1
)
,

∥∇x,yk(x, y)∥ ≤ C1

((
∥x∥2 + ∥y∥2

)(α−1)/2
+ 1
)
,

where α is the same α in Assumption 1. 3. Lipschitz-
ness: Each non-parametric component of Gθ, ϕi, is
M-Lipschitz. 4. Piecewise analytic: For each ϕi,

there are Ki functions ϕki , k = 1, . . . ,Ki, each real
analytic on its input space, and these functions agree
with ϕi on the closure of a set Dk, and the sets Dk

i

cover the whole input space. 5. Differentiability:
Each parametric component of Gθ, ψθ,j , is almost
everywhere differentiable on the parameter space Θ.

Assumption 1 in Assumption 2.1 naturally hold. As-
sumption 2 (Assumption E in Bińkowski et al. (2018))
holds for a wide range of kernels, including the Gaussian
kernel and the Riesz kernel for 1 ≤ β < 2. Assump-
tions 3 and 4 (Assumptions C and D in Bińkowski et al.
(2018)) hold for the vast majority of the activation func-
tions used in deep neural networks, such as softmax
and ReLU. However, Assumptions 3, 4, and 5 deal with
components of Gθ, they are hence context-dependent.
We leverage the Lindley equation (Lindley, 1952) to
discuss these conditions for G/G/1 queueing models in
Section A.3.2 of the Supplementary Material.
Proposition 2.2 (Unbiased Gradient Estimate). If
Assumption 2.1 holds, then EY1(θ),··· ,Yn(θ)∇θL̂

KS
m,n(θ) =

∇θL
KS
m (θ).

The proof follows from Theorem 5 in Bińkowski et al.
(2018) and the chain rule. Proposition 2.2 enables the
design of an SGD algorithm in the model inexactness
setting as outlined in Algorithm 1. The loop is the
proposed SGD algorithm and the remaining steps are
about the confidence set procedure; see Section 2.3 for
details. Note that Briol et al. (2019) offers a similar
SGD algorithm under model exactness.

Time Complexity of Kernel Optimum Score
Estimation Applying SGD in Algorithm 1 can be
computationally costly. Following from Briol et al.
(2019), the time complexity for SGD in Algorithm 1
in each iteration is O((n2 + mn)dp), where d is the
dimension of data and p is the dimension of the pa-
rameter space Θ. The quadratic time complexity in
the simulated sample size n renders the use of large
n impractical within limited computational resources.
To determine the most computationally efficient n, we
need to find the optimal ratio λ = n

m+n corresponding
to the highest statistical efficiency i.e. minimizing the
asymptotic variance-covariance for the kernel simulated
score estimator. Note that simulated score estimator
is not used in practice as it needs to resample from Pθ

to obtain Y1(θ), . . . , Yn(θ) in each SGD iteration. The-
orem 2.4 provides the asymptotic normality of both
the kernel simulated score estimator and the kernel
optimum score estimator. Section A.3.1 of the Sup-
plementary Material discusses the optimal ratio λ in
detail.

Optimal Simulation Parameter Minimizing the
optimum score asymptotically amounts to min-
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imizing the statistical distance dS(Pθ, P⋆) be-
tween Pθ and P⋆. The parameter that min-
imizes dS(Pθ, P⋆) is termed the optimal simula-
tion parameter : θ⋆ ∈ argminθ∈Θ dS(Pθ, P⋆) =
EX∼P⋆

[S(Pθ, X)− S(P⋆, X)] . The choice of the kernel
influences both the optimal simulation parameter and
the statistical properties of the kernel optimum score
estimator, discussed in Section 2.3 and Section A.3.1 of
the Supplementary Material. The optimal simulation
parameter may not be unique due to the complex na-
ture of the input-output probabilistic map. This issue
is known as model non-identifiability, a common chal-
lenge in inverse problems where the input is calibrated
with the output (Tarantola, 2005). This challenge is
exacerbated when the scoring rule used for estimation
lacks the strict propriety. An example is the Dawid-
Sebastiani score (Dawid and Sebastiani, 1999), which is
proper but not strictly proper, relying solely on the first
two moments. Multiple θ ∈ Θ may exist such that Pθ

aligns with the first two moments of P⋆. Using strictly
proper scoring rules for estimation helps alleviate model
non-identifiability problems. In the case of an exact
(P⋆ ∈ {Pθ : θ ∈ Θ}) and an identifiable stochastic sim-
ulation model, the optimal simulation parameter θ⋆ is
the true simulation parameter θ0 (Proposition A.21).

2.2 New Results on Asymptotic Normality
under Model Inexactness

We denote the optimal simulation parameter with
the kernel score by θKS

⋆ . The strong consistency
property of the kernel optimum score estimator, i.e.,
θ̂KS
m

a.s.→ θKS
⋆ , is given in the Supplementary Material

(Proposition A.15). Here, we provide the speed of con-
vergence in terms of asymptotic variance-covariance
with asymptotic normality of the kernel optimum score
estimator. We also exhibit asymptotic normality of
the kernel simulated score estimator to facilitate the
discussion of the choice of the ratio λ = n

m+n . The
following assumption gives the regularity conditions for
the asymptotic normality of the kernel optimum score
estimator and kernel simulated score estimator.

Assumption 2.3. 1. There exists an open
and convex neighborhood of θKS

⋆ denoted N such
that EZ,X supθ∈N ∥∇θk(Gθ(Z), X)∥ < ∞ and
EZ,Z′ supθ∈N ∥∇θk(Gθ(Z), k(Gθ(Z

′))∥ < ∞ for all
θ ∈ N . 2. EZ,X ∥∇θk(Gθ(Z), X)∥2 |θ=θKS

⋆
< ∞ and

EZ,Z′ ∥∇θk(Gθ(Z), k(Gθ(Z
′))∥2 |θ=θKS

⋆
< ∞. 3. For

all r, s ∈ {1, . . . , p} and θ = (θ1, . . . , θp) ∈ Rp:

EZ,X

[∣∣∣∇θrθsk(Gθ(Z), X) |θ=θKS
⋆

∣∣∣
log+

(∣∣∣∇θrθsk(Gθ(Z), X) |θ=θKS
⋆

∣∣∣)] ,
EZ,Z′

[∣∣∣∇θrθsk(Gθ(Z), Gθ(Z
′)) |θ=θKS

⋆

∣∣∣] <∞.

4. ∇θk(Gθ(z), x), ∇θk(Gθ(z), Gθ(z
′)) are differen-

tiable on N for P -almost all z, z′ ∈ Z and P⋆-almost
all x ∈ Rd. 5. ∇θθk(Gθ(z), x), ∇θθk(Gθ(z), Gθ(z

′))
are uniformly continuous at θKS

⋆ for P -almost all
z, z′ ∈ Z and P⋆-almost all x ∈ Rd, where ∇θθ(·)
denotes the Hessian with respect to θ. 6. The
Hessian H = EZ,Z′

[
∇θθk(Gθ(Z), Gθ(Z

′)) |θ=θKS
⋆

]
−

2EZ,X

[
∇θθk(Gθ(Z), X) |θ=θKS

⋆

]
is positive definite.

While technical in nature, these regularity conditions
are standard assumptions for central limit theorems in
this context. Section A.3.4 of the Supplementary Mate-
rial discusses practical verification of these assumptions
for specific model classes and identifies scenarios where
they are likely to hold.
Theorem 2.4 (Asymptotic Normality). Let us sup-
pose θ̂KS

m
a.s.→ θKS

⋆ , θ̂KS
m,n

a.s.→ θKS
⋆ as m,n → ∞,

limm,n→∞
n

m+n = λ ∈ (0, 1), and Assumption 2.3
holds. Then as m→ ∞,

√
m(θ̂KS

m − θKS
⋆ )

d→ N(0, C),

where d→ denotes convergence in distribu-
tion. The variance-covariance matrix is the
Godambe matrix C = H−1ΣH−1, where
Σ = 4CX

[
EZ

[
∇θk(Gθ(Z), X) |θ=θKS

⋆

]]
, C[·] de-

notes the variance-covariance matrix. Furthermore,
√
m+ n(θ̂KS

m,n − θKS
⋆ )

d→ N(0, Cλ),

where Cλ = H−1ΣλH
−1, Σλ =

CZ [2h(Z)−g0,1(Z)]
λ +

CX [g1,0(X)]
1−λ , h(z) = EZ′∇θk(Gθ(z), Gθ(Z

′)) |θ=θKS
⋆

,
g0,1(z) = 2EX∇θk(Gθ(z), X) |θ=θKS

⋆
, and g1,0(x) =

2EZ∇θk(Gθ(Z), x) |θ=θKS
⋆

.

See Section A.2.5 of the Supplementary Material for
the proof. Note that Σ = CX [g1,0(X)]. When the
model is exact and identifiable, Theorem 2.4 reduces to
the asymptotic normality under model exactness as in
Theorem 2 of Briol et al. (2019), where the asymptotic
variance-covariance of θ̂KS

m,n is C
λ(1−λ) . The asymptotic

variance-covariance is hence minimized at λ = 1
2 i.e.

the simulated sample size n equals the output data size
from the target system m, meaning that using n much
larger than m is not computationally efficient.

However, under model inexactness, the determination
of an optimal λ becomes complex due to the instance-
dependent nature of the asymptotic variance-covariance
Cλ, influenced by various factors, such as the kernel k,
the reference measure of Z, P , and the input model
Gθ, rendering it computationally intractable. A nu-
anced trade-off between the variance-covariance terms
from the simulated sample Z and the data X further
complicates the selection of λ.
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Despite the complexity of Cλ, we can derive ana-
lytical insights for determining the optimal λ. For
one-dimensional parameters (p = 1), asymptotic vari-
ance Cλ is minimized at λ =

√
c1√

c1+
√
c2

, where c1 =

CZ [2h(Z)−g0,1(Z)] and c2 = CX [g1,0(X)]. When c1 =
c2, including the model exactness case, λ = 1

2 . Heuris-
tically, when the distributions of X and Gθ(Z)|θ=θKS

⋆

are similar (small model discrepancy), λ approaches to-
ward 1

2 , suggesting that using n much larger than m is
inefficient. Conversely, when the variance of Y (θKS

⋆ ) sig-
nificantly exceeds that of X, increasing the simulation
sample size might be beneficial for variance reduction.

We can also use C and Cλ for kernel selection (Briol
et al., 2019). While both Cλ and C are computation-
ally intractable as the unknown parameter θKS

⋆ , con-
sistent estimations can be obtained (See Section 2.3).
Section A.3.1 of the Supplementary Material further
discusses λ and kernel selection.

2.3 New Confidence Set Procedure and
Analyses

Theorem 2.4 allows the construction of an asymptot-
ically valid confidence set for the optimal simulation
parameter θKS

⋆ . Such a confidence procedure requires
a consistent estimator for the asymptotic variance-
covariance matrix C = H−1ΣH−1. Both H and Σ
have expectation and covariance terms concerning X
and Z, and depend on θKS

⋆ . To obtain consistent esti-
mators for H and Σ, we can estimate expectation and
covariance terms with empirical estimates, and replace
θKS
⋆ with the obtained kernel optimum score estimator
θ̂KS
m . We can use a larger simulation sample size nc to

estimate expectation and covariance terms. Let Ĥm,nc ,
Σ̂m,nc

denote the consistent estimators to H and Σ,
respectively. Then

Ĥm,nc =
1

nc(nc − 1)

∑
1≤i̸=j≤nc

∇θθk(Gθ(Zi), Gθ(Zj))

|θ=θ̂KS
m

− 2

mnc

m∑
i=1

nc∑
j=1

∇θθk(Gθ(Zj), Xi) |θ=θ̂KS
m
.

(1)
Let µ̂m,nc

= 1
mnc

∑m
i=1

∑nc

j=1 ∇θk (Gθ(Zj), Xi) |θ=θ̂KS
m

,
µ̂i =

1
nc

∑nc

j=1 ∇θk (Gθ(Zj), Xi) |θ=θ̂KS
m
. Then we have

Σ̂m,nc
=

4

m− 1

m∑
i=1

(µ̂i − µ̂m,nc)
T (µ̂i − µ̂m,nc). (2)

The following assumption is regarding the consistency
of Σ̂m,nc .

Assumption 2.5. ∇θk(Gθ(z), x) is uniformly contin-
uous and uniformly bounded at θKS

⋆ for P -almost all
z, z′ ∈ Z and P⋆-almost all x ∈ Rd.

Algorithm 1 Kernel Optimum Score Estimation and
Confidence Set Estimation

Input: Initial θ̂
(0)
m,n ∈ Θ, output data

X1, . . . , Xm
i.i.d.∼ P⋆, step sizes {ηt}t≥0, simulation

sample size n per iteration, simulation sample size
nc for confidence set estimation, significance level α.
Initialize t = 0.
repeat Sample Z1, . . . , Zn

i.i.d.∼ P and set Yj(θ̂
(t)
m,n) =

G
θ̂
(t)
m,n

(Zj) for j = 1, . . . , n. Compute θ̂
(t+1)
m,n =

ΠΘ

[
θ̂
(t)
m,n − ηt∇θL̂

KS
m,n(θ̂

(t)
m,n)

]
. Set t = t+ 1.

until convergence criterion is met.
Let θ̂KS

m = θ̂
(t)
m,n. Sample Z1, . . . , Znc

i.i.d.∼ P . Com-
pute Σ̂m,nc

with (2) and Ĥm,nc
with (1). Compute

CSαm,nc
with (3).

Output: θ̂KS
m and CSαm,nc

.

We denote the consistent estimator for C by Ĉm,nc
=

Ĥ−1
m,nc

Σ̂m,ncĤ
−1
m,nc

.
Theorem 2.6. If Assumptions 2 and 3 in Assump-
tion 2.3, and Assumption 2.5 hold, then Ĥm,nc

p→
H, Σ̂m,nc

p→ Σ, as m,nc → ∞, and Ĉm,nc
=

Ĥ−1
m,nc

Σ̂m,ncĤ
−1
m,nc

p→ H−1ΣH−1 as m,nc → ∞.

See Section A.2.6 of the Supplementary Material for
the proof. Theorem 2.6 guarantees that the ellipsoid{
θ ∈ Θ :

∥∥∥√mΣ̂
− 1

2
m,ncĤm,nc

(
θ − θ̂KS

m

)∥∥∥2 ≤ χ2
1−α(p)

}
(3)

denoted CSαm,nc
is an asymptotically valid 100(1−α)%

confidence set for θKS
⋆ , where χ2

1−α(p) is the (1 − α)-
quantile of the chi-squared distribution with p degrees
of freedom where p is the dimension of the parame-
ter space Θ. The procedure to compute CSαm,nc

is
summarized in Algorithm 1. The time complexity for
computing Ĥm,nc

and Σ̂m,nc
in total is O((n2c+mnc)pd)

if using automatic differentiation for Hessian estima-
tion, and O((n2c +mnc)p

2d) if using finite difference for
Hessian estimation. The time complexity for checking
whether an arbitrary point θ is in Ĉα

m,nc
is O(p3).

3 NUMERICAL EXPERIMENTS

This section studies the performance of Algorithm 1
on exact and inexact stochastic simulation models of
G/G/1 queueing models. Throughout the experiments,
unless otherwise specified, we use the Riesz kernel
with β = 1 (KOSE-Riesz) and the Gaussian kernel
with the bandwidth determined by the median heuris-
tic (Gretton et al., 2012) (KOSE-Gaussian). We con-
sider the case where a sample of average waiting times
X1, . . . , Xm from the target G/G/1 system output P⋆
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is available. The corresponding G/G/1 queueing model
output is Pθ = Gθ(Z), where θ is the input simulation
parameter. Table 1 gives the details of the settings
for Experiments 1 to 4. We use Experiments 2 and
4 to explore how the performance changes with in-
creasing model inexactness. Specifically, we set the
shape parameter of the service time distribution to be
a = 1, 0.8, 0.6, 0.4, 0.2, where a = 1 is the exact model
case, and smaller values of a indicate higher model
inexactness. Further experiment details are reported in
Section A.4 of the Supplementary Material. Our SGD-
based approach requires the differentiability of θ and
the unbiasedness of the gradient estimate. We discuss
and validate these requirements for G/G/1 queueing
models and for other models in Sections A.3.2 and A.3.4
of the Supplementary Material, respectively.

Table 1: Experiment settings. Arr., Serv. give the
distributions of the inter-arrival time and service time
in the target G/G/1 queueing system and the G/G/1
simulation model. Gam. means Gamma.

No. Dist. Target Model θ
1 Arr. Exp(1) Exp(1) µ

Serv. Exp(1.2) Exp(µ)
2 Arr. Exp(1) Exp(1) µ

Serv. Gam.(a, 1.2) Exp(µ)
3 Arr. Gam.(0.5, 1) Gam.(0.5, λ) (µ, λ)

Serv. Exp(1) Exp(µ)
4 Arr. Gam.(0.5, 1) Gam.(0.5, λ) (µ, λ)

Serv. Gam.(a, 2.5) Exp(µ)

We compare our method with three baselines: accept-
reject ABC (ABC-AR) (Beaumont et al., 2002) with
MMD, MMD posterior bootstrap (NPL-MMD) (Del-
laporta et al., 2022), and eligibility set (ESet) (Bai
and Lam, 2020). For each baseline method and our
proposed method, we record performance metrics such
as mean-squared error (MSE), Monte Carlo coverage
of credible or confidence sets, width of credible or con-
fidence sets, and average run time. These results are
presented in Tables 4, 2, 5, 3 for Experiments 1, 2, 3,
4, respectively. We also provide the plots for the confi-
dence set produced in Experiment 4 for KOSE-Riesz
(Figures 1 and 2) and KOSE-Gaussian (Figures 3 and
4) in a = 1, 0.6.

We conclude from Tables 2 and 3 that KOSE-Riesz con-
sistently produces valid confidence sets (despite a slight
undercoverage issue for a = 1 in Table 2), except for
a = 0.4, 0.2 in Experiment 4, both more extreme model
inexactness scenarios. We use R = 1, 000 in most cases
except when the run time is larger we use R = 100. In
all model inexactness scenarios, KOSE-Riesz produces
stable optimum score estimates with constantly small
MSE. KOSE-Gaussian suffers from small undercover-

age issues for a = 0.8, 0.2 in Experiment 2, and the
produced optimum score estimates appear less stable
than those of KOSE-Riesz, while all the benchmarks
do not produce valid credible or confidence intervals
under model inexactness. We also observe from Ta-
bles 4 and 5 of the Supplementary Material that our
method consistently produces valid confidence sets, for
both KOSE-Riesz and KOSE-Gaussian under model
exactness. And both KOSE-Riesz and KOSE-Gaussian
yield better MSE for the optimum score estimates and
smaller confidence set width asm increases, as expected.
ABC-AR and ESet methods also produce valid credible
or confidence sets for larger m under model exactness,
while NPL-MMD does not produce valid credible sets
even under model exactness.

We observe that our confidence sets consistently achieve
coverage rates that exceed the nominal 95% level. This
conservative behavior is preferable to undercoverage,
which would invalidate uncertainty quantification. In
statistical practice, confidence sets that contain the
true parameter with probability higher than the nom-
inal level ensure reliability at the cost of potentially
wider intervals. This trade-off is particularly valuable in
our context where model inexactness and optimization
error introduce additional uncertainty to simulation
parameter estimation. Future work could explore meth-
ods such as regularized asymptotic variance estimation
(Oates et al., 2022) to potentially reduce confidence set
width while maintaining valid coverage.

Additional experiments on different choices of β in
KOSE-Riesz, sensitivity of the simulation sample size
n, bias in uncertainty evaluation, contamination mod-
els, and a stochastic volatility model are reported in
Sections A.4.1, A.4.2, A.4.3, A.4.4, and A.4.5 of the
Supplementary Material, respectively.

4 CONCLUSION

In this paper, we introduce the first frequentist method
to learn and quantify the uncertainties of differentiable
simulation parameters with output-level data under
model inexactness. Our approach is based on kernel
score minimization and a new asymptotic normality
result. We demonstrate the superior numerical per-
formance of our approach for both exact and inexact
G/G/1 queueing models. Our approach produces ac-
curate estimators with low mean-squared error (MSE)
and more valid confidence sets, outperforming both
Bayesian (Beaumont et al., 2002; Dellaporta et al.,
2022) and frequentist (Bai and Lam, 2020) methods.

While our method shows promising results, we acknowl-
edge several important considerations. The scalability
to higher parameter dimensions remains an open chal-
lenge, as practical difficulties arise in Hessian estima-
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Table 2: Experiment 2 results; Value a is the shape
parameter of the service time distribution in the target
system; R is the number of independent runs; m =
n = 500. MSE is the average mean-squared error,
Cov. is the coverage of the 95% confidence or credible
set, Width is the average length of the confidence or
credible set, and T is the average time per run in
seconds. Empty is the number of empty confidence sets.
Parameter θKS

⋆ is the optimal simulation parameter
obtained using KOSE-Gaussian.

KOSE-Riesz, R = 1, 000
a MSE Cov. Width T θKS

⋆

1 4.0 · 10−4 0.920 0.07 3 1.2
0.8 1.6 · 10−4 0.996 0.07 3 1.5
0.6 2.6 · 10−4 0.999 0.10 3 1.9
0.4 6.7 · 10−4 0.999 0.15 3 2.5
0.2 3.0 · 10−3 1.000 0.34 3 4.1

KOSE-Gaussian, R = 1, 000
a MSE Cov. Width T θKS

⋆

1 1.8 · 10−4 0.990 0.06 4 1.2
0.8 7.4 · 10−4 0.842 0.08 4 1.5
0.6 8.0 · 10−4 0.942 0.10 3 1.9
0.4 1.0 · 10−3 0.997 0.17 4 2.5
0.2 1.9 · 10−2 0.833 0.37 4 4.1

ABC-AR, R = 1, 000
a MSE Cov. Width T
1 4.4 · 10−5 0.994 0.04 3
0.8 9.0 · 10−2 0.000 0.06 3
0.6 0.83 0.000 0.13 3
0.4 0.93 0.000 0.08 3
0.2 0.81 0.000 0.24 3

NPL-MMD, R = 100 ESet, R = 1, 000
a Cov. Width T Cov. Empty T
1 0.63 0.09 81 0.989 0 3
0.8 0.00 0.10 77 0.000 0 3
0.6 0.00 0.12 79 0.000 0 3
0.4 0.00 0.15 76 NA 1, 000 3
0.2 0.00 0.22 78 NA 1, 000 3

tion and memory requirements despite our dimension-
independent asymptotic theory. Our empirical vali-
dation focuses primarily on G/G/1 queueing models,
though our preliminary work with stochastic volatility
models suggests broader applicability. The connec-
tions between our approach and neural network models
reveal a key distinction: while neural networks offer un-
limited approximation capacity, stochastic simulation
models have inherent structural constraints, making
model inexactness unavoidable. We further discuss scal-
ability, applicability, and the connection between our
approach and neural network-based generative models
in Section A.3.6, Section A.3.4 and Section A.1.4 of

Table 3: Experiment 4 results; Here, m = n = 1, 000.
MSE, µ and MSE, λ are the average mean-squared
errors for the service and arrival rates.

KOSE-Riesz, R = 1, 000
a MSE, µ MSE, λ Cov. T θKS

⋆

1 1.3 · 10−2 4.7 · 10−2 1 10 (2.5, 1.0)
0.8 1.2 · 10−2 3.1 · 10−4 1 9 (6.0, 2.9)
0.6 4.2 · 10−3 4.7 · 10−2 1 9 (7.9, 3.1)
0.4 2.3 · 10−4 7.6 · 10−4 0 9 (10, 2.9)
0.2 1.2 · 10−5 4.3 · 10−3 0 9 (9.5, 1.0)

KOSE-Gaussian, R = 1, 000
a MSE, µ MSE, λ Cov. T θKS

⋆

1 1.1 · 10−2 4.0 · 10−3 1 9 (2.5, 1.0)
0.8 4.6 · 10−2 2.0 · 10−2 1 9 (6.0, 2.9)
0.6 2.0 · 10−2 1.1 · 10−2 1 9 (7.9, 3.1)
0.4 4.6 · 10−2 8.4 · 10−3 0 9 (10, 2.9)
0.2 6.7 · 10−5 3.9 · 10−1 0 9 (9.5, 1.0)

ABC-AR, R = 100
a MSE Cov. Width, µ, λ T
1 8.9 · 10−3 0.41 0.54, 0.69 88
0.8 1.7 · 10−3 0.00 0.24, 0.25 88
0.6 3.0 · 10−4 0.00 0.26, 0.24 88
0.4 7.9 · 10−5 0.00 0.32, 0.24 88
0.2 2.3 · 10−5 0.00 0.23, 0.35 87

NPL-MMD, R = 100 ESet, R = 1, 000
a Cov. Width, µ, λ T Cov. Empty T
1 0.59 0.74, 0.62 66 0 3 2
0.8 0.59 1.99, 1.44 64 NA 1, 000 3
0.6 0.32 3.11, 1.65 63 NA 1, 000 3
0.4 0.66 8.00, 4.67 58 NA 1, 000 3
0.2 0.27 0.06, 4.91 55 NA 1, 000 3

the Supplementary Material, respectively.

In future work, we plan to explore methods to reduce
optimization cost, such as the weighted MMD approach
(Bharti et al., 2023) for MMD estimation or using natu-
ral gradient descent (Briol et al., 2019). We also aim to
explore avenues for simplifying our assumptions, par-
ticularly in the i.i.d. assumption and Assumption 2.3.
Extending our results to non-i.i.d. scenarios presents a
significant challenge, primarily due to the absence of
a law of large numbers for generalized U-statistics in
such settings. Moreover, many of the stringent condi-
tions in Assumption 2.3 stem from Theorem A.20. One
potential approach to simplify these assumptions is
establishing asymptotic normality through the Hilbert
space version of the central limit theorem (Oates et al.,
2022).
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A SUPPLEMENTARY MATERIAL

A.1 Background and Preliminaries

A.1.1 G/G/1 Queueing System

We provide a brief introduction to G/G/1 queues for interested readers. In probability theory, the G/G/1 queue
is a single-server queue with the first-in-first-out (FIFO) discipline, meaning that the customer who first enters
the server is also the first to exit the server. In G/G/1 queues, the interarrival times of customers follow a
general distribution, and service times follow a different general distribution. The dynamics of a G/G/1 queue
are described by the Lindley equation (see Section A.3.2 for details).

The M/M/1 queue and M/G/1 queue are two special cases of the G/G/1 queue. In M/M/1 queues, both the
interarrival times and the service times are exponentially distributed. In M/G/1 queues, the interarrival times
are exponentially distributed, while the service times follow a general distribution.

A.1.2 Energy Distance and Maximum Mean Discrepancy (MMD)

The associated divergence function of the energy score is the energy distance (Baringhaus and Franz, 2004; Székely
and Rizzo, 2013)

E(β)(P,Q) = EX,Y ∥X − Y ∥β − 1

2
EX,X′ ∥X −X ′∥β − 1

2
EY,Y ′ ∥Y − Y ′∥β ,

where X,X ′ i.i.d.∼ Q.

The associated divergence function of the kernel score is the squared maximum mean discrepancy (Gretton et al.,
2012):

MMD2
k(P,Q) = EX,X′ [k (X,X ′)]− 2EX,Y [k(X,Y )] + EY,Y ′ [k (Y, Y ′)] .

Sejdinovic et al. (2013) establishes the equivalence of the energy distance and the MMD. The kernel score is
strictly proper, and the MMD is a metric on the space of Borel probability measures such that EY

√
k(Y, Y ) <∞,

denoted Pk, if the kernel k is characteristic (Fukumizu et al., 2007).

A positive-definite, measurable kernel k is said to be characteristic if the kernel mean embedding µk : Pk → Hk

(Smola et al., 2007) is injective, where Hk is the reproducing kernel Hilbert space (RKHS) associated with k and
equipped with inner product ⟨·, ·⟩Hk

and norm ∥ · ∥Hk
.

The kernel mean embedding µk is a continuous map that embeds a probability measure P into an element
µP
k = EY [k(·, Y )] of the RKHS Hk. The MMD can be expressed as the distance between kernel mean embeddings

in Hk: MMDk(P,Q) = ∥µP
k − µQ

k ∥Hk
(Gretton et al., 2012). As a result, when k is characteristic (i.e. µk is

injective), ∥µP
k − µQ

k ∥Hk
= 0 implies P = Q, the MMD is a metric on Pk and the kernel score is strictly proper.

A.1.3 Model Inexactness versus Model Contamination

This section expands on the distinction between model contamination and model inexactness introduced in the
main paper, providing additional technical context for these two fundamental types of model discrepancy.

Model Contamination In model contamination scenarios, the underlying model specification is correct, but
the observed data contain noise, outliers, or other forms of contamination. Formally, the classical Huber’s
contamination model (Huber, 1992) is given as follows:

X1, . . . , Xm ∼ (1− ϵ)P⋆ + ϵQ, ϵ ∈ (0, 1),

where Q represents the distribution of the contamination, and P⋆ represents the true data-generating distribution
that belongs to the model class {Pθ : θ ∈ Θ}, P⋆ = Pθ0 , θ0 ∈ Θ. The statistical challenge is estimating θ0 while
being robust to the presence of contaminated observations.

Model contamination has been extensively studied in robust statistics. In the context of simulation-based inference,
several Bayesian approaches like γ-ABC (Fujisawa et al., 2021) and MMD posterior bootstrap (Dellaporta
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et al., 2022) have been developed to address contamination. Section A.4.4 presents additional experiments on
contamination models with our confidence set procedure.

We also note that queueing and contamination models are distinct concepts. Queueing models are a specific class
of stochastic simulation models, while any class of models can be contamination models if the observed data are
contaminated.

Model Inexactness In contrast, model inexactness (or model misspecification) occurs when the observed data
is uncontaminated, but the model class {Pθ : θ ∈ Θ} is incapable of perfectly representing the true data-generating
distribution P⋆. Formally, P⋆ /∈ {Pθ : θ ∈ Θ}. This means that there exists no parameter θ ∈ Θ such that Pθ = P⋆.
The challenge becomes to find the "best possible" parameter θ⋆ that minimizes some statistical distance between
Pθ and P⋆.

Model inexactness is inherent in many scientific domains where simplifying assumptions is necessary for com-
putational feasibility. For instance, queueing models often assume specific parametric families for service time
distributions that may not perfectly capture real-world behavior.

Experimental Designs to Study Different Types of Discrepancy In our experimental evaluation, we
designed distinct approaches to study these two types of discrepancy:

1. Model Inexactness: In Experiments 2 and 4, we systematically vary the shape parameter a of the service
time distribution in the target system while maintaining a fixed parametric family in the simulation model.
As a decreases from 1.0 to 0.2, the structural mismatch between the target system and simulation model
increases, allowing us to evaluate performance under increasing model inexactness.

2. Model Contamination: In Section A.4.4 of the Supplementary Material, we conduct an additional experiment
where we add white noise from N(0, 0.01) to varying percentages (ϵ = 0.01, 0.05, 0.1, 0.2, 0.5) of the output
data, simulating different levels of data contamination.

These experimental designs allow us to separately evaluate the performance of our method under each type of
discrepancy. While our primary focus is on model inexactness, understanding performance under contamination
provides a more comprehensive assessment of robustness. The distinction between these two types of discrepancy
is crucial for proper method selection and evaluation. Methods designed for contamination may not perform well
under model inexactness, and vice versa, as they address fundamentally different statistical challenges.

A.1.4 Stochastic Simulation Models versus Deep Generative Models

The key difference between deep generative models and stochastic simulation models lies in the deterministic
structure of the latter, determined by target system mechanics. For instance, if the target system is an email
server queue governed by a Poisson process for arrivals and unknown service time distributions, the stochastic
simulation model would be an M/G/1 queueing model. Unlike deep generative models, which can be considered
as well-specified (justified by universal approximation theorems), altering the structure of stochastic simulation
models, such as increasing network depth, is not applicable to enhance their approximation capabilities.

Consider the previous instance of modeling an email server queue. Given the unknown service time distribution
of the target system, the model service time distribution likely does not align with that of the target system
for any simulation parameter θ. As a result, the stochastic simulation model is inherently inexact. One way to
enhance approximation capabilities of stochastic simulation models is through meta-modeling, where service and
arrival time distributions are modeled using deep neural networks rather than fixed distribution families typically
used in queueing networks. We further discuss meta-modeling in the last paragraph of Section A.3.2.

A.2 Technical Framework and Properties

A.2.1 Useful Assumptions

The following assumptions are those summarized in Assumption 2.1.

Assumption A.1 (Finite moments). EX∥X∥α,EZ∥Z∥α <∞ for some α ≥ 1.
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Assumption A.1 corresponds to Assumption A in Bińkowski et al. (2018).

Assumption A.2. There exists constants C0, C1 such that

|k(x, y)| ≤ C0

((
∥x∥2 + ∥y∥2

)α/2
+ 1
)

∥∇x,yk(x, y)∥ ≤ C1

((
∥x∥2 + ∥y∥2

)(α−1)/2
+ 1
)
,

where α is the same α in Assumption A.1.

The following two conditions (Assumption C and D in Bińkowski et al. (2018)) are imposed on the non-parametric
components of Gθ.

Assumption A.3 (Lipschitzness). Each non-parametric component of Gθ, ϕi, is M-Lipschitz.

Assumption A.4 (Piecewise analytic). For ϕi, there are Ki functions ϕki , k = 1, . . . ,Ki, each real analytic on
the input space Rdϕi , where dϕi

denotes the dimension of the input space, and agrees with ϕi on the closure of a
set Dk: ϕi(x) = ϕki (x) ∀x ∈ Dk

i . The sets Dk
i are disjoint, and cover the whole input space:

⋃Ki

k=1 D
k

i = Rdπ .
Each Dk

i is defined by Si,k real analytic functions Gi,k,s : Rdϕi → R as

Dk
i =

{
x ∈ Rdϕi | Gi,k,s(x) > 0 ∀s = 1, . . . , Si,k

}
.

Assumption A.5 (Differentiability). Each parametric component of Gθ, ψθ,j , is almost everywhere differentiable
with respect to θ.

The following regularity conditions are summarized in Assumption A.14.

Assumption A.6 (Separability). The reproducing kernel Hilbert space Hk is separable.

Assumption A.7. EX

√
k(X,X) <∞, where X ∼ P⋆.

The following regularity conditions are summarized in Assumption 2.3.

Assumption A.8. There exists a open and convex neighbourhood of θKS
⋆ denoted N such that

EZ,X supθ∈N ∥∇θk(Gθ(Z), X)∥ <∞ and EZ,Z′ supθ∈N ∥∇θk(Gθ(Z), k(Gθ(Z
′)∥ <∞ for all θ ∈ N .

Assumption A.9. EZ,X ∥∇θk(Gθ(Z), X)∥2 |θ=θKS
⋆
,EZ,Z′ ∥∇θk(Gθ(Z), k(Gθ(Z

′)∥2 |θ=θKS
⋆
<∞.

Assumption A.10. EZ,X

[∣∣∣∇θrθsk(Gθ(Z), X) |θ=θKS
⋆

∣∣∣ log+ (∣∣∣∇θrθsk(Gθ(Z), X) |θ=θKS
⋆

∣∣∣)] ,
EZ,Z′

[∣∣∣∇θrθsk(Gθ(Z), Gθ(Z
′)) |θ=θKS

⋆

∣∣∣] <∞ for all r, s ∈ {1, . . . , p}, where θ = (θ1, . . . , θp) ∈ Rp.

Assumption A.11. ∇θk(Gθ(z), x), ∇θk(Gθ(z), Gθ(z
′)) are differentiable on N for all P -almost all z, z′ ∈ Z and

P⋆-almost all x ∈ Rd.

Assumption A.12. ∇θθk(Gθ(z), x), ∇θθk(Gθ(z), Gθ(z
′)) are uniformly continuous at θKS

⋆ for all P -almost all
z, z′ ∈ Z and P⋆-almost all x ∈ Rd, where ∇θθ(·) denotes the Hessian with respect to θ

Assumption A.13. The Hessian H = EZ,Z′

[
∇θθk(Gθ(Z), Gθ(Z

′)) |θ=θKS
⋆

]
− 2EZ,X

[
∇θθk(Gθ(Z), X) |θ=θKS

⋆

]
is positive definite.

A.2.2 Known Results

When a stochastic simulation model is identifiable, the (kernel) optimum score estimator converges to the optimal
simulation parameter almost surely. Oates et al. (2022) provides the following regularity conditions.

Assumption A.14 (Separability and Kernel Bound). The reproducing kernel Hilbert space Hk is separable, and
EX

√
k(X,X) <∞, where X ∼ P⋆.

Note that Hk is separable if the kernel k corresponding to the RKHS Hk is continuous and its input space
is separable (Steinwart and Christmann, 2008). Since the input space Rd considered here is separable, Hk is
separable for all continuous kernels on Rd, which include the Gaussian, Laplacian, and Riesz kernel. Condition
EX

√
k(X,X) < ∞ ensures that P⋆ is in the space of Borel probability measures on which the corresponding

MMD of kernel k is a metric.
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Proposition A.15 (Strong consistency (Oates et al., 2022)). If Assumption A.14 hold, and the optimal simulation
parameter θKS

⋆ is unique, then θ̂KS
m

a.s.→ θKS
⋆ , where a.s.→ denotes almost sure convergence.

Proposition A.15 provides the convergence guarantee for the kernel optimum score estimator without the speed of
convergence.
Proposition A.16 (Strong consistency under model non-identifiability (Oates et al., 2022)). If Assumptions A.6
and A.7 hold, and the divergence function dKS(Pθ, P⋆) is continuous on Θ, then any accumulation point of
{θ̂KS

m }m∈N is almost surely an element of argminθ∈Θ dKS(Pθ, P⋆).

Note that Theorem 10 in Oates et al. (2022) gives the sufficient conditions for the existence of accumulation
points of the sequence {θ̂KS

m }m∈N.

The generalization bounds for MMD under bounded kernel require the following assumption (Briol et al., 2019).
Assumption A.17. 1. For every Q ∈ Pk, there exists c > 0 such that the set {θ ∈ Θ : MMDk (Pθ, Q) ≤

infθ′∈Θ MMDk (Pθ′ , Q) + c} is bounded.

2. For every n ∈ N and Q ∈ Pk, there exists cn > 0 such that the set {θ ∈ Θ : MMDk

(
P̂n
θ , Q

)
≤

infθ′∈Θ MMDk

(
P̂n
θ′ , Q

)
+ cn} is bounded, where P̂n

θ and P̂n
θ′ are empirical measures.

Theorem A.18 (Generalization bounds (Briol et al., 2019)). Suppose that the kernel k is bounded, and
Assumption A.17 holds, then with probability at least 1− δ,

MMD
(
Pθ̂KS

m
, Q
)
≤ inf

θ∈Θ
MMD(Pθ, Q) + 2

√
2

m
sup
x∈Rd

k(x, x)

(
2 +

√
log

(
1

δ

))
,

and

MMD
(
Pθ̂KS

m,n
, Q
)
≤ inf

θ∈Θ
MMD(Pθ, Q) + 2

(√
2

n
+

√
2

m

)√
sup
x∈Rd

k(x, x)

(
2 +

√
log

(
2

δ

))
.

The following results are used in proving Theorem 2.4.
Proposition A.19 (Differentiation lemma (Bińkowski et al., 2018)). Let Θ ∈ Rp be a non-trivial open set, Q
be a probability measure on Rm and V is an m-dimensional random variable such that V ∼ Q. Define a map
h : Rm ×Θ 7→ Rn with the following properties:

1. For any θ ∈ Θ,EV [∥hθ(V )∥] <∞.

2. For Q-almost all v ∈ Rm, the map Θ → Rn, θ 7→ hθ(v) is differentiable.

3. There exists a Q-integrable function g : Rm 7→ R such that ∥∇θhθ(v)∥ ≤ g(v) for all θ ∈ Θ.

Then, for any θ ∈ Θ,EV ∥∇θhθ(V )∥ <∞ and the function θ 7→ EV [hθ(V )] is differentiable with differential

∇θEV [hθ(V )] = EV [∇θhθ(V )] .

Theorem A.20 (Strong law of large numbers for generalized k-sample U-statistics (Sen, 1977)). Let {Xi,j , i =
1, . . . , k, j = 1, . . . , ni} be a sequence of independent and identically distributed d-dimensional random variables
with each Xi,j having measure Pi. For m = (m1, . . . ,mk), consider the generalized U-statistic

U(n) =

k∏
i=1

(
ni
mi

)−1∑
ϕ
(
Xi,j1 , . . . , Xi,jmi

, i = 1, . . . , k
)
,

where mi ≤ ni is the degree vector and the summation
∑

extends over all possible 1 ≤ j1 < . . . < jmi
≤

ni, i = 1, . . . , k. Suppose that EXi,j1 ,...,Xi,jmi

[∣∣ϕ (Xi,j1 , . . . , Xi,jmi

)∣∣ (log+ ∣∣ϕ (Xi,j1 , . . . , Xi,jmi

)∣∣)k−1
]
<∞, where

log+(x) = max(0, log(x)). Then, as n1, . . . , nk → ∞,

U(n)
a.s.→ EXi,j1 ,...,Xi,jmi

[
ϕ
(
Xi,j1 , . . . , Xi,jmi

)]
.
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A.2.3 Optimal and True Simulation Parameter

The following proposition gives the equivalence of the optimal simulation parameter and the true simulation
parameter under model exactness and identifiability.
Proposition A.21. Suppose that the stochastic simulation model is exact and identifiable. If the scoring rule S
is strictly proper relative to P, and {Pθ : θ ∈ Θ} ⊂ P, then θ⋆ = θ0.

Proof. We prove by contradiction assuming θ⋆ ̸= θ0. By uniqueness of θ0, P⋆ ̸= Pθ⋆ . Since S is strictly proper,
EX∼P⋆

S(P⋆, X) < EX∼P⋆
S(Pθ⋆ , X). Thus if θ⋆ ̸= θ0, we have

EX∼P⋆
S(P⋆, X) < EX∼P⋆

S(Pθ⋆ , X) = L⋆(θ⋆) ≤ L⋆(θ0) = EX∼P⋆
S(Pθ0 , X) = EX∼P⋆

S(P⋆, X).

A.2.4 Comparison of Asymptotic Normality with Prior Work in Bayesian and Frequentist
Frameworks

We want to emphasize the key distinctions between our asymptotic normality result (Theorem 2.4) and related
work in both Bayesian and frequentist frameworks.

Comparison with Bayesian Approaches Our result differs fundamentally from Bayesian posterior consistency
results such as Theorem 2 in Pacchiardi et al. (2024). While both approaches quantify parameter uncertainty,
they operate within different statistical paradigms:

1. Our frequentist approach establishes that the distribution of the kernel optimum score estimator converges to
a normal distribution centered at the optimal simulation parameter. In contrast, Pacchiardi et al. (2024) show
that their posterior distribution concentrates around the optimal simulation parameter within a Bayesian
framework.

2. Our result provides asymptotically correct coverage for our proposed confidence set procedure. This property
is unattainable with posterior consistency results from Bayesian approaches. As Pacchiardi et al. (2024)
explicitly note in Section 3.1 of their paper, their credible sets do not provide correct frequentist coverage,
even under ideal conditions with strictly proper scoring rules and well-specified models.

Comparison with Frequentist Approaches under Model Exactness Our work also extends beyond Briol
et al. (2019), which establishes asymptotic normality for kernel optimum score estimators under model exactness.
Key theoretical innovations in our approach include:

1. Different Statistical Tools: Model inexactness requires us to employ the strong law of large numbers for
generalized k-sample U-statistics (Theorem A.20) rather than standard U-statistics theory (Van der Vaart,
2000). This necessitates additional technical conditions, specifically Assumption A.10 and the uniform
continuity of the Hessian (Assumption A.12), that are not required in the exact model case.

2. Structural Differences in Target System Output Data: Under model inexactness, observations from the
target system (X1, . . . , Xm) lack the push-forward representation that exists in exact models. In other words,
there exists no Gθ and Z such that X = Gθ(Z). This fundamental difference manifests in our U-statistic U2

defined in Section A.2.5, requiring new conditions on the kernel function k(Gθ(Z), X) (Assumptions A.8,
A.9 and A.11) that were unnecessary in previous work focused solely on k(Gθ(Z), Gθ(Z

′)).

3. Weaker Differentiability Requirements: Our approach establishes asymptotic normality under less restrictive
conditions, notably removing the requirement for trice differentiability of Gθ present in Briol et al. (2019).

4. Validated Confidence Set Construction: We provide the first result of consistent variance estimation in
Theorem 2.6, which fully justifies the asymptotic validity of our confidence sets under model inexactness.

These technical advances allow us to develop the first complete asymptotic theory for kernel-based confidence sets
in simulation models with inherent model inexactness, addressing a fundamental challenge in practical simulation
calibration.
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A.2.5 Proof of Theorem 2.4

Proof. We shall only prove the asymptotic normality of the kernel simulated score estimator θ̂KS
m,n, as the proof

for the asymptotic normality of the kernel optimum score estimator θ̂KS
m follows an entirely analogous way.

The first order optimality condition implies that ∇θL̂
KS
m,n(θ) |θ=θ̂KS

m,n
= 0. As θ̂KS

m,n
a.s.→ θKS

⋆ as m,n→ ∞, θ̂KS
m,n ∈ N

a.s. for sufficiently large m,n. Then the mean value theorem implies that there a.s. exists a θ̃KS
m,n ∈ N between

θKS
⋆ and θ̂KS

m,n such that

0 = ∇θL̂
KS
m,n(θ) |θ=θ̂KS

m,n
= ∇θL̂

KS
m,n(θ) |θ=θKS

⋆
+∇θθL̂

KS
m,n(θ) |θ=θ̃KS

m,n
(θ̂KS

m,n − θKS
⋆ ).

If ∇θθL̂
KS
m,n(θ) |θ=θ̃KS

m,n
is non-singular,

√
m+ n(θ̂KS

m,n−θKS
⋆ ) = −∇θθL̂

KS
m,n(θ)

−1 |θ=θ̃KS
m,n

·
√
m+ n∇θL̂

KS
m,n(θ) |θ=θKS

⋆
.

We first show that ∇θθL̂
KS
m,n(θ) |θ=θ̃KS

m,n

p→ H. We prove the stronger almost sure convergence. Observe that

∇θθL̂
KS
m,n(θ) |θ=θ̃KS

m,n
= ∇θθL̂

KS
m,n(θ) |θ=θKS

⋆
+∇θθL̂

KS
m,n(θ) |θ=θ̃KS

m,n
−∇θθL̂

KS
m,n(θ) |θ=θKS

⋆
, (4)

where

∇θθL̂
KS
m,n(θ) |θ=θKS

⋆
=

1

n(n− 1)

∑
1≤i ̸=j≤n

∇θθk(Gθ(Zi), Gθ(Zj)) |θ=θKS
⋆

− 2

mn

m∑
i=1

n∑
j=1

∇θθk(Gθ(Zj), Xi) |θ=θKS
⋆
.

Recall θ = (θ1, . . . , θp) ∈ Rp. As Assumption A.10 holds, the strong law of large numbers for U-statistics
(Theorem A.20) implies that

1

n(n− 1)

∑
1≤i̸=j≤n

∇θrθsk(Gθ(Zi), Gθ(Zj)) |θ=θKS
⋆

a.s.→ EZ,Z′∇θrθsk(Gθ(Z), Gθ(Z
′)) |θ=θKS

⋆
,

and
2

mn

m∑
i=1

n∑
j=1

∇θrθsk(Gθ(Zj), Xi) |θ=θKS
⋆

a.s.→ 2EZ,X∇θrθsk(Gθ(Z), X) |θ=θKS
⋆
.

Therefore,

∇θrθsL̂
KS
m,n(θ) |θ=θKS

⋆

a.s.→ EZ,Z′∇θrθsk(Gθ(Z), Gθ(Z
′)) |θ=θKS

⋆
− 2EZ,X∇θrθsk(Gθ(Z), X) |θ=θKS

⋆

for all r, s ∈ {1, . . . , p}. Then ∇θθL̂
KS
m,n(θ) |θ=θKS

⋆

a.s.→ H.

Now we just need to show that
∥∥∥∇θθL̂

KS
m,n(θ) |θ=θ̃KS

m,n
−∇θθL̂

KS
m,n(θ) |θ=θKS

⋆

∥∥∥ p→ 0.

Assumption A.12 implies that for any ϵ > 0 there exists an open neighborhood Nϵ ⊂ N such that∥∥∥∇θθk(Gθ(z), x)−∇θθk(Gθ(z), x) |θ=θKS
⋆

∥∥∥ ,∥∥∥∇θθk(Gθ(z), Gθ(z
′))−∇θθk(Gθ(z), Gθ(z

′)) |θ=θKS
⋆

∥∥∥ < ϵ

for all θ ∈ Nϵ, z, z′ ∈ Z, x ∈ Rd. Since θ̂KS
m,n

a.s.→ θKS
⋆ as m,n→ ∞, θ̃KS

m,n
a.s.→ θKS

⋆ as m,n→ ∞, then θ̃KS
m,n ∈ Nϵ a.s.

for sufficiently large m,n. Therefore,∥∥∥∇θθk(Gθ(z), x) |θ=θ̃KS
m,n

−∇θθk(Gθ(z), x) |θ=θKS
⋆

∥∥∥ ,∥∥∥∇θθk(Gθ(z), Gθ(z
′)) |θ=θ̃KS

m,n
−∇θθk(Gθ(z), Gθ(z

′)) |θ=θKS
⋆

∥∥∥ < ϵ
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a.s. for all z, z′ ∈ Z, x ∈ Rd, which in turn implies that∥∥∥∇θθL̂
KS
m,n(θ) |θ=θ̃KS

m,n
−∇θθL̂

KS
m,n(θ) |θ=θKS

⋆

∥∥∥
=

∥∥∥∥∥∥ 1

n(n− 1)

∑
1≤i ̸=j≤n

(
∇θθk(Gθ(Zi), Gθ(Zj)) |θ=θ̃KS

m,n
− k(Gθ(Zi), Gθ(Zj)) |θ=θKS

⋆

)

− 2

mn

 m∑
i=1

n∑
j=1

∇θθk(Gθ(Zj), Xi) |θ=θ̃KS
m,n

− k(Gθ(Zj), X) |θ=θKS
⋆

∥∥∥∥∥∥
≤ 1

n(n− 1)

∑
1≤i ̸=j≤n

∥∥∥∇θθk(Gθ(Zi), Gθ(Zj)) |θ=θ̃KS
m,n

− k(Gθ(Zi), Gθ(Zj)) |θ=θKS
⋆

∥∥∥
+

2

mn

m∑
i=1

n∑
j=1

∥∥∥∇θθk(Gθ(Zj), Xi) |θ=θ̃KS
m,n

− k(Gθ(Zj), X) |θ=θKS
⋆

∥∥∥
< 3ϵ.

Therefore,
∥∥∥∇θθL̂

KS
m,n(θ) |θ=θ̃KS

m,n
−∇θθL̂

KS
m,n(θ) |θ=θKS

⋆

∥∥∥ a.s.→ 0. Given ∇θθL̂
KS
m,n(θ) |θ=θKS

⋆

a.s.→ H, (4) implies that

∇θθL̂
KS
m,n(θ) |θ=θ̃KS

m,n

a.s.→ H as m,n→ ∞. Since H is positive-definite from Assumption A.13, ∇θθL̂
KS
m,n(θ) |θ=θ̃KS

m,n

is non-singular for sufficiently large m,n.

We now show that
√
m+ n∇θL̂

KS
m,n(θ) |θ=θKS

⋆

d→ N(0, Cλ). Observe that

∇θL̂
KS
m,n(θ) |θ=θKS

⋆
=

1

n(n− 1)

∑
1≤i̸=j≤n

∇θk(Gθ(Zi),Gθ(Zj)) |θ=θKS
⋆

− 2

mn

m∑
i=1

n∑
j=1

∇θk(Gθ(Zj), Xi) |θ=θKS
⋆
.

Denote
U1 =

1

n(n− 1)

∑
1≤i ̸=j≤n

∇θk(Gθ(Zi), Gθ(Zj)) |θ=θKS
⋆

and

U2 =
2

mn

m∑
i=1

n∑
j=1

∇θk(Gθ(Zj), Xi) |θ=θKS
⋆
.

Both U1 and U2 are U-statistics. Assumption A.8 implies that there exists integrable functions b1 : Z ×
Rd → R and b2 : Z × Z → R such that ∥∇θk(Gθ(Z), X)∥ ≤ b1(Z,X) and ∥∇θk(Gθ(Z), Gθ(Z

′))∥ ≤ b2(Z,Z
′),

EZ,X |b1(Z,X)| ,EZ,Z′ |b2(Z,Z ′)| <∞.

As Assumptions A.9 and A.11 hold, Proposition A.19 implies that

EZ1,...,Zn,X∇θL̂
KS
m,n(θ) |θ=θKS

⋆
= ∇θEZ1,...,Zn,X L̂

KS
m,n(θ) |θ=θKS

⋆
= ∇θ MMDk(Pθ, P⋆) |θ=θKS

⋆
. (5)

By the first order optimality condition, ∇θ MMDk(Pθ, P⋆) |θ=θKS
⋆

= 0.

Therefore, EZ1,...,Zn,X∇θL̂
KS
m,n(θ) |θ=θKS

⋆
= 0, which implies that

EU1 = EZ1,...,Zn

1

n(n− 1)

∑
1≤i ̸=j≤n

∇θk(Gθ(Zi), Gθ(Zj)) |θ=θKS
⋆

=
2

mn

m∑
i=1

n∑
j=1

EZ1,...,Zn,X∇θk(Gθ(Zj), Xi) |θ=θKS
⋆

= EU2.
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Now denote EU1 = EU2 by M . We need to show that
√
n(U1 − Û1)

p→ 0 and
√
m+ n(U2 − Û2)

p→ 0, where Û1 =
2
n

∑n
j=1 h(Zj), Û2 = 1

m

∑m
i=1 g1,0(Xi) +

1
n

∑n
j=1 g0,1(Zj) are the Hájek projections of U1 and U2, respectively. As

√
m+ n(U1−U2) =

√
m+ n

(
Û1 − Û2 + (U1 − Û1) + (U2 − Û2)

)
, the asymptotic distribution of

√
m+ n(U1−U2)

is the same as the asymptotic distribution of
√
m+ n(Û1 − Û2) if

√
n(U1 − Û1)

p→ 0 and
√
m+ n(U2 − Û2)

p→ 0.

We only prove
√
m+ n(U2 − Û2)

p→ 0 as the proof of
√
n(U1 − Û1)

p→ 0 follows an entirely analogous way.

We prove the stronger L2 convergence result E
[(√

m+ n(U2 − Û2)
)T (√

m+ n(U2 − Û2)
)]

→ 0 as m,n→ ∞.

Trivial algebra gives that EÛ1 = EÛ2 =M . Then E(U2 − Û2) = 0, and hence

E
[(√

m+ n(U2 − Û2)
)T (√

m+ n(U2 − Û2)
)]

=(m+ n)E
[(
U2 − Û2

)T (
U2 − Û2

)]
=(m+ n) tr

(
C
[
U2 − Û2

])
=(m+ n) tr

(
C [U2] + C

[
Û2

]
− 2C

[
U2, Û2

])
.

As Assumption A.10 holds, Theorem 12.6 in Van der Vaart (2000) implies that both (m + n) tr (C [U2]) and
(m+n) tr

(
C
[
Û2

])
converges to tr(CZ [g0,1(Z)])

λ +
tr(CX [g1,0(X)])

1−λ . We just need to show that (m+n) tr
(
C
[
U2, Û2

])
converges to tr(CZ [g0,1(Z)])

λ +
tr(CX [g1,0(X)])

1−λ as well.

By definition,

(m+ n) tr
(
C
[
U2, Û2

])
=(m+ n) tr

E


 2

mn

m∑
i=1

n∑
j=1

∇θk(Gθ(Zj), Xi) |θ=θKS
⋆

−M

T

 1

m

m∑
i=1

g1,0(Xi) +
1

n

n∑
j=1

g0,1(Zj)−M


=tr

m+ n

m
EX1,...,Xm

√m( 1

m

m∑
i=1

g1,0(Xi)−
1

2
M

)T
√
m

(
1

m

m∑
i=1

g1,0(Xi)−
1

2
M

)
+
m+ n

n
EY1,...,Yn

√n
 1

n

n∑
j=1

g0,1(Zj)−
1

2
M

T

√
n

 1

n

n∑
j=1

g0,1(Zj)−
1

2
M





→ tr (CZ [g0,1(Z)])

λ
+

tr (CX [g1,0(X)])

1− λ
,

leveraging the classical central limit theorem. Hence, we have
√
n(U1 − Û1)

p→ 0 and
√
m+ n(U2 − Û2)

p→ 0 as
m,n→ ∞.
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Plug in the expressions of Û1 and Û2 to derive

√
m+ n(Û1 − Û2) =

√
m+ n

 2

n

n∑
j=1

h1(Zj)−
1

m

m∑
i=1

g1,0(Xi)−
1

n

n∑
j=1

g0,1(Zj)


=

√
m+ n

 1

n

n∑
j=1

(2h1(Zj)− g0,1(Zj))−
1

m

m∑
i=1

g1,0(Xi)


=

√
m+ n

n

√
n

 1

n

n∑
j=1

(2h1(Zj)− g0,1(Zj))−
1

2
M


−
√
m+ n

m

√
m

(
1

m

m∑
i=1

g1,0(Xi)−
1

2
M

)
.

As Assumption A.10 holds, the classical central limit theorem implies that

√
n

 1

n

n∑
j=1

(2h1(Zj)− g0,1(Zj))−
1

2
M

 d→ N (0,CZ [2h1(Z)− g0,1(Z)])

√
m

(
1

m

m∑
i=1

g1,0(Xi)−
1

2
M

)
d→ N (0,CX [g1,0(X)]) .

Furthermore, as limm,n→∞
n

m+n = λ, Xi and Zj are independent, we get

√
m+ n(Û1 − Û2)

d→ N

(
0,

CZ [2h1(Z)− g0,1(Z)]

λ
+

CX [g1,0(X)]

1− λ

)
= N(0,Σλ).

Hence
√
m+ n∇θL̂

KS
m,n(θ) |θ=θKS

⋆
=

√
m+ n(U1 − U2)

d→ N(0,Σλ). As ∇θθL̂
KS
m,n(θ) |θ=θ̃KS

m,n

p→ H, the Slut-

sky’s theorem implies that
√
m+ n(θ̂KS

m,n − θKS
⋆ ) = −∇θθL̂

KS
m,n(θ)

−1 |θ=θ̃KS
m,n

·
√
m+ n∇θL̂

KS
m,n(θ) |θ=θKS

⋆

d→
N(0, H−1ΣλH

−1).

A.2.6 Proof of Theorem 2.6

Proof. To simplify notation, n in this proof is the simulation sample size for confidence set estimation that equals
to nc in Theorem 2.6. We first show that Ĥm,n

p→ H as m,n→ ∞. Recall that Ĥm,n = ∇θθL̂
KS
m,n(θ) |θ=θ̂KS

m
. The

proof follows an entirely analogous way as the proof of ∇θθL̂
KS
m,n(θ) |θ=θ̃KS

m,n

p→ H in A.2.5.

As Assumption A.10 holds, leveraging the strong law of large numbers for generalized k-sample
U-statistics (Theorem A.20) gives ∇θθL̂

KS
m,n(θ) |θ=θKS

⋆

a.s.→ H. We just need to show that∥∥∥∇θθL̂
KS
m,n(θ) |θ=θ̂KS

m,n
−∇θθL̂

KS
m,n(θ) |θ=θKS

⋆

∥∥∥ a.s.→ 0.

Assumption A.12 implies that for any ϵ > 0 there exists an open neighborhood Nϵ ⊂ N such that∥∥∥∇θθk(Gθ(z), x)−∇θθk(Gθ(z), x) |θ=θKS
⋆

∥∥∥ ,∥∥∥∇θθk(Gθ(z), Gθ(z
′))−∇θθk(Gθ(z), Gθ(z

′)) |θ=θKS
⋆

∥∥∥ < ϵ

for all θ ∈ Nϵ, z, z′ ∈ Z, x ∈ Rd. Since θ̂KS
m,n

a.s.→ θKS
⋆ as m,n→ ∞, then θ̂KS

m,n ∈ Nϵ a.s. for sufficiently large m,n.

Therefore, ∥∥∥∇θθk(Gθ(z), x) |θ=θ̂KS
m,n

−∇θθk(Gθ(z), x) |θ=θKS
⋆

∥∥∥ ,∥∥∥∇θθk(Gθ(z), Gθ(z
′)) |θ=θ̂KS

m,n
−∇θθk(Gθ(z), Gθ(z

′)) |θ=θKS
⋆

∥∥∥ < ϵ
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a.s. for all z, z′ ∈ Z, x ∈ Rd, which in turn implies that

∥∥∥∇θθL̂
KS
m,n(θ) |θ=θ̂KS

m,n
−∇θθL̂

KS
m,n(θ) |θ=θKS

⋆

∥∥∥ < 3ϵ.

Therefore,
∥∥∥∇θθL̂

KS
m,n(θ) |θ=θ̂KS

m,n
−∇θθL̂

KS
m,n(θ) |θ=θKS

⋆

∥∥∥ a.s.→ 0.

Now we show that Σ̂m,n
p→ Σ as m,n→ ∞. We slightly abuse notation to define Σ̂m,n(θ) as a function of θ:

Σ̂m,n(θ) =
4

m− 1

m∑
i=1

(µ̂i(θ)− µ̂m,n(θ))
T
(µ̂i(θ)− µ̂m,n(θ)) ,

where

µ̂m,n(θ) =
1

mn

m∑
i=1

n∑
j=1

∇θk (Gθ(Zj), Xi)

µ̂i(θ) =
1

n

n∑
j=1

∇θk (Gθ(Zj), Xi) .

Then Σ̂m,n(θ̂
KS
m,n) = Σ̂m,n. We first prove that Σ̂m,n(θ

KS
⋆ )

p→ Σ. By definition,

Σ̂m,n(θ
KS
⋆ )

=
4

m− 1

m∑
i=1

(
µ̂i(θ

KS
⋆ )− µ̂m,n(θ

KS
⋆ )
)T (

µ̂i(θ
KS
⋆ )− µ̂m,n(θ

KS
⋆ )
)

=
4

m− 1

m∑
i=1

(
µ̂i(θ

KS
⋆ )T µ̂i(θ

KS
⋆ )− µ̂m,n(θ

KS
⋆ )T µ̂i(θ

KS
⋆ )− µ̂i(θ

KS
⋆ )T µ̂m,n(θ

KS
⋆ ) + µ̂m,n(θ

KS
⋆ )T µ̂m,n(θ

KS
⋆ )
)

=
4

(m− 1)n2

m∑
i=1

n∑
j=1

n∑
l=1

∇θk (Gθ(Zj), Xi)
T |θ=θKS

⋆
∇θk (Gθ(Zl), Xi) |θ=θKS

⋆

− 4

m(m− 1)n2

m∑
i=1

m∑
p=1

n∑
j=1

n∑
l=1

∇θk (Gθ(Zj), Xi)
T |θ=θKS

⋆
∇θk (Gθ(Zl), Xp) |θ=θKS

⋆
.

As Assumption A.9 holds, the strong law of large numbers for generalized k-sample U-statistics (Theorem A.20)
implies that as m,n→ ∞,

4

(m− 1)n2

m∑
i=1

n∑
j=1

n∑
l=1

∇θk (Gθ(Zj), Xi)
T |θ=θKS

⋆
∇θk (Gθ(Zl), Xi) |θ=θKS

⋆

a.s.→

4EX,Z,Z′

[
∇θk (Gθ(Z), X)

T |θ=θKS
⋆

∇θk (Gθ(Z
′), X) |θ=θKS

⋆

]
4

m(m− 1)n2

m∑
i=1

m∑
p=1

n∑
j=1

n∑
l=1

∇θk (Gθ(Zj), Xi)
T |θ=θKS

⋆
∇θk (Gθ(Zl), Xp) |θ=θKS

⋆

a.s.→

4EX,X′,Z,Z′

[
∇θk (Gθ(Z), X)

T |θ=θKS
⋆

∇θk (Gθ(Z
′), X ′) |θ=θKS

⋆

]
,
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where X,X ′ i.i.d.∼ P⋆, Z,Z ′ i.i.d.∼ P . Therefore,

Σ̂m,n(θ
KS
⋆ )

a.s.→4EX,Z,Z′

[
∇θk (Gθ(Z), X)

T |θ=θKS
⋆

∇θk (Gθ(Z
′), X) |θ=θKS

⋆

]
− 4EX,X′,Z,Z′

[
∇θk (Gθ(Z), X)

T |θ=θKS
⋆

∇θk (Gθ(Z
′), X ′) |θ=θKS

⋆

]
=4EX,X′

[
EZ

[
∇θk (Gθ(Z), X)

T |θ=θKS
⋆

] (
EZ

[
∇θk (Gθ(Z), X) |θ=θKS

⋆

]
− EZ

[
∇θk (Gθ(Z), X

′) |θ=θKS
⋆

])]
=4EX

[
EZ

[
∇θk (Gθ(Z), X)

T |θ=θKS
⋆

] (
EZ

[
∇θk (Gθ(Z), X) |θ=θKS

⋆

]
− EX,Z

[
∇θk (Gθ(Z), X) |θ=θKS

⋆

])]
=CX

[
EZ∇θk (Gθ(Z), X) |θ=θKS

⋆

]
=Σ.

Now we just need to show that
∥∥∥Σ̂m,n(θ

KS
⋆ )− Σ̂m,n

∥∥∥ p→ 0. We only prove that∥∥∥∥∥ 4

m− 1

m∑
i=1

[
µ̂i(θ

KS
⋆ )T µ̂i(θ

KS
⋆ )− µ̂i(θ̂

KS
m,n)

T µ̂i(θ̂
KS
m,n)

]∥∥∥∥∥ a.s.→ 0,

as the almost sure convergence of all the other components of Σ̂m,n(θ
KS
⋆ )− Σ̂m,n follows an entirely analogous

way.

By definition,∥∥∥∥∥ 4

m− 1

m∑
i=1

[
µ̂i(θ

KS
⋆ )T µ̂i(θ

KS
⋆ )− µ̂i(θ̂

KS
m,n)

T µ̂i(θ̂
KS
m,n)

]∥∥∥∥∥
=

4

m− 1

∥∥∥∥∥∥
m∑
i=1

 1

n

n∑
j=1

∇θk (Gθ(Zj), Xi)
T |θ=θKS

⋆
· 1
n

n∑
l=1

∇θk (Gθ(Zl), Xi) |θ=θKS
⋆

− 1

n

n∑
j=1

∇θk (Gθ(Zj), Xi)
T |θ=θ̂KS

m,n
· 1
n

n∑
l=1

∇θk (Gθ(Zl), Xi) |θ=θ̂KS
m,n

∥∥∥∥∥∥
=

4

(m− 1)n2

∥∥∥∥∥∥
m∑
i=1

n∑
j=1

n∑
l=1

[
∇θk (Gθ(Zj), Xi)

T |θ=θKS
⋆

∇θk (Gθ(Zl), Xi) |θ=θKS
⋆

−∇θk (Gθ(Zj), Xi)
T |θ=θ̂KS

m,n
∇θk (Gθ(Zl), Xi) |θ=θ̂KS

m,n

]∥∥∥
≤ 4

(m− 1)n2

m∑
i=1

n∑
j=1

n∑
l=1

∥∥∥∇θk (Gθ(Zj), Xi)
T |θ=θKS

⋆
∇θk (Gθ(Zl), Xi) |θ=θKS

⋆

−∇θk (Gθ(Zj), Xi)
T |θ=θ̂KS

m,n
∇θk (Gθ(Zl), Xi) |θ=θ̂KS

m,n

∥∥∥
≤ 4

(m− 1)n2

m∑
i=1

n∑
j=1

n∑
l=1

{∥∥∥(∇θk (Gθ(Zj), Xi)
T |θ=θKS

⋆
−∇θk (Gθ(Zj), Xi)

T |θ=θ̂KS
m,n

)
·∇θk (Gθ(Zl), Xi) |θ=θKS

⋆

∥∥∥
+
∥∥∥∇θk (Gθ(Zj), Xi)

T |θ=θ̂KS
m,n

(
∇θk (Gθ(Zl), Xi) |θ=θKS

⋆
−∇θk (Gθ(Zl), Xi) |θ=θ̂KS

m,n

)∥∥∥}
=

4

(m− 1)n2

m∑
i=1

n∑
j=1

n∑
l=1

{∥∥∥∇θk (Gθ(Zl), Xi) |θ=θKS
⋆

∥∥∥∥∥∥∇θk (Gθ(Zj), Xi) |θ=θKS
⋆

− ∇θk (Gθ(Zj), Xi) |θ=θ̂KS
m,n

∥∥∥
+
∥∥∥∇θk (Gθ(Zj), Xi) |θ=θ̂KS

m,n

∥∥∥ ∥∥∥∇θk (Gθ(Zl), Xi) |θ=θKS
⋆

−∇θk (Gθ(Zl), Xi) |θ=θ̂KS
m,n

∥∥∥} .

(6)
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As Assumption 2.5 holds, for any ϵ > 0 there exists an open neighborhood Nϵ ⊂ N such that∥∥∥∇θk (Gθ(z), x) |θ=θKS
⋆

−∇θk (Gθ(z), x)
∥∥∥ < ϵ,

and there exists a non-negative constant M such that∥∥∥∇θk (Gθ(z), x) |θ=θKS
⋆

∥∥∥ < M

for all x ∈ Rd and z ∈ Z. Since θ̂KS
m,n

a.s.→ θKS
⋆ as m,n→ ∞, then θ̂KS

m,n ∈ Nϵ a.s. for sufficiently large m,n. Then
for sufficiently large m,n, the right-hand side of (6) denoted RHS a.s. has

RHS ≤ 4

(m− 1)n2

m∑
i=1

n∑
j=1

n∑
l=1

2Mϵ ≤ 8Mϵ.

Therefore, we conclude that
∥∥∥ 4
m−1

∑m
i=1

[
µ̂i(θ

KS
⋆ )T µ̂i(θ

KS
⋆ )− µ̂i(θ̂

KS
m,n)

T µ̂i(θ̂
KS
m,n)

]∥∥∥ a.s.→ 0. Making the analogous

arguments for all the other components of Σ̂m,n(θ
KS
⋆ )− Σ̂m,n gives

∥∥∥Σ̂m,n(θ
KS
⋆ )− Σ̂m,n

∥∥∥ p→ 0. Hence Σ̂m,n
p→ Σ

as m,n → ∞. Similarly, Ĉm,n = Ĥ−1
m,nΣ̂m,nĤ

−1
m,n

p→ H−1ΣH−1 as m,n → ∞ follows from the continuity of
matrix inversion and multiplication.

A.3 Implementation and Practical Considerations

A.3.1 Optimal Sample Size and Kernel Selection

Briol et al. (2019) discuss the choice of the simulation sample size n under model exactness by finding the best
ratio λ = n

m+n in terms of computational efficiency. Theorem 2 in Briol et al. (2019) establishes asymptotic
variance-covariance of the kernel simulated score estimator θ̂KS

m,n to be C
λ(1−λ) . The asymptotic variance-covariance

is hence minimized at λ = 1
2 (i.e. the size of the simulated sample n equals that of the output data from the

target system m). This means that using n much larger than m is not computationally efficient.

The choice of optimal λ in terms of computational efficiency under model inexactness is notably intricate. Recall
that the asymptotic variance-covariance of the kernel simulated score estimator is Cλ = H−1ΣλH

−1, where
Σλ =

CZ [2h(Z)−g0,1(Z)]
λ +

CX [g1,0(X)]
1−λ . In addition to being dependent on λ and the unknown θKS

⋆ , Σλ is influenced
by factors such as the chosen kernel, the reference measure of Z, the distribution of X (i.e., the distribution of
the target system output), and the input model Gθ. Identifying the optimal λ is thus highly instance-dependent
and computationally intractable.

Furthermore, Σλ represents a trade-off between the variance-covariance term arising from the simulated sample Z
and that arising from data X. Let c1 = CZ [2h(Z)− g0,1(Z)] and c2 = CX [g1,0(X)]. In the case where p = 1 (i.e.,
the parameter θ ∈ Θ is one-dimensional), simple algebra yields that the asymptotic variance Cλ is minimized at
λ =

√
c1√

c1+
√
c2

. When c1 = c2, including the model exactness case, λ = 1
2 . Heuristically, when the distributions of

X and Gθ(Z) |θ=θKS
⋆

= Y (θKS
⋆ ) are relatively close (i.e., the model discrepancy is small), λ is close to 1

2 . Therefore,
using n much larger than m is not computationally efficient. However, when the variance of Y (θKS

⋆ ) is larger
than that of X such that its corresponding variance-covariance c1 dominates c2, it becomes advantageous to
use n much larger than m to reduce the variance of the estimator. Such a phenomenon usually happens at the
beginning of training.

On the other hand, two main streams of approaches to kernel selection exist in the literature. The first stream
focuses on investigating the asymptotic distribution of the estimator or the test statistics, such as in the kernel
two-sample test (Gretton et al., 2012). The objective in this stream is to choose the kernel to maximize the power
of the test (Sutherland et al., 2017; Liu et al., 2020) or minimize the asymptotic variance-covariance (Briol et al.,
2019). In the latter case, while both Cλ and C are typically computationally intractable due to the unknown
parameter θKS

⋆ , consistent estimations can be obtained (for example, Ĉm,n). The selection of the kernel for
stochastic simulation models, guided by empirical estimations, is a subject for future research.

The second stream focuses on investigating the radial basis function (RBF) kernel, represented as k(x, y) =

r
(

∥x−y∥
l

)
, where r : R → R+ is a positive-valued function, and l is the bandwidth of the kernel. The Gaussian
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kernel is a notable instance of the RBF kernel. Several heuristics for RBF kernel selection, such as the median
heuristic (Gretton et al., 2012) and the kernel mixture heuristic (Li et al., 2015), have demonstrated high power
in kernel two-sample testing. However, the effectiveness of these heuristics in the context of stochastic simulation
models requires further exploration in future research. Additionally, the choice of the parameter β for Riesz
kernels presents another open problem to be investigated. The Riesz kernel with 1 ≤ β ≤ 2 complies with
Assumption A.2. However, there are currently no established guidelines for selecting an optimal value of β within
the range of 1 to 2.

A.3.2 Differentiability and Unbiased Gradient for G/G/1 Queueing Models

We validate the differentiability of θ and gradient unbiasedness for each experiment in this section. We only
discuss Experiment 4, as the case for all the other experiments follows an entirely analogous way. Recall in
Experiment 4, the inter-arrival time of the G/G/1 model follows the Gamma distribution with rate λ, denoted
Gamma(0.5, λ), and the service time follows an exponential distribution with rate µ, denoted Exp(µ). The
simulation parameter is denoted θ = (µ, λ), and the input model is denoted Gθ.

For each θ, the procedure for generating a single sample Y (θ) is as follows. Sample Y (θ) is the average waiting
times of a set of customers. To simulate Y (θ), we need to simulate a set of customer waiting times. We denote
the waiting time of the j-th customer by Wj(θ). The Lindley equation provides a representation of the waiting
time in a G/G/1 queueing system:

Wj+1(θ) = ReLU (Wj(θ) + Sj(µ)− Tj(λ)) ,

where the service time of the j-th customer is denoted by Sj(µ), and the interarrival time between the j-th and
(j + 1)-th customer is denoted by Tj(λ). We just need to simulate a set of customer service times {Sj(µ)} and
waiting times {Tj(λ)} and apply the Lindley equation to get {Wj(θ)} (Nelson and Pei, 2013).

The Lindley equation is akin to a ReLU activation function, hence simplifying validation of differentiability and
unbiased gradient to Assumptions 3 and 4 in Assumption 2.1 on Sj(µ) and Tj(λ). We focus solely on Tj(λ), as
the analysis for Sj(µ) follows an entirely analogous way.

Consider the ‘pushforward’ representation Tj(λ) = Tλ(Zj), Zj
i.i.d.∼ P , where P is the user-specified reference

measure. If we use inverse-transform sampling, then P = U(0, 1), Tj(λ) =
log(1−Zj)

λ = ψλ,1(ϕ1(Zj)), where
ψλ,1(z) =

z
λ and ϕ1(z) = log(1 − z). Such usual pseudo-random number generation with P = U(0, 1) violates

Assumption 3 due to the non-M-Lipschitz inverse transform ϕ1(z) = log(1−z). Both assumptions hold if we select
P = Exp(1) and apply the linear transform Sµ = Qn

µ . A similar decomposition holds for the rate parameter of a
Gamma distribution: P = Gamma(0.5, 0.5), Zj ∼ P , Sj(µ) =

Zj

µ . Hence, by picking a good reference measure P ,
Gθ is (almost everywhere) differentiable with respect to θ = (µ, λ), and the gradient is unbiased.

Such decomposition of Gθ may not be universally applicable, as in the case of the shape parameter of a Gamma
distribution. There exists no reference measure P such that the input model Gθ is differentiable when θ is the
shape parameter of a Gamma distribution. Hence, the shape parameter is not learnable with our approach.

Furthermore, Gθ can also be a meta-model that models the service and arrival time distribution with learnable
parameter θ. Such meta-models are usually deep neural networks (Chambers and Mount-Campbell, 2002; Ojeda
et al., 2021) that satisfy Assumption 3 and 4 in Assumption 2.1.

A.3.3 Pathwise Gradients and Alternative Gradient Estimation Approaches

Our approach relies on pathwise gradients through backward propagation, which can be viewed as a form of
infinitesimal perturbation analysis (IPA) in stochastic gradient estimation (Asmussen and Glynn, 2007; Fu, 2015;
Mohamed et al., 2020). This connection to IPA highlights an important methodological consideration that our
technique fundamentally depends on the existence of pathwise gradients for parameter estimation.

The pathwise gradient approach offers significant advantages when applicable, particularly in terms of computa-
tional efficiency and variance reduction. However, the existence of IPA estimators depends on how the stochastic
process is represented (Fu, 2015). In other words, we need to find a good pair of reference measure P and input
model Gθ as suggested in Section A.3.2. Hence, it faces limitations when simulation parameters do not admit
pathwise differentiation, such as the shape parameter of the Gamma distribution discussed in Section A.3.2. For
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such cases, score function/likelihood ratio estimators present a viable alternative. These methods can generate
unbiased gradient estimates even when pathwise derivatives do not exist. Chapter VII of Asmussen and Glynn
(2007), Section 5 of Fu (2015), and Section 4 of Mohamed et al. (2020) provide detailed discussions on using IPA
and score function/likelihood ratio estimators for stochastic gradient estimation.

However, applying score estimators to likelihood-free stochastic simulation models presents a fundamental
challenge: the inability to evaluate the log-likelihood of the model output distribution. One potential solution
involves developing meta-models (e.g., neural network approximations) to estimate these likelihoods as suggested
in Section A.3.2. However, this approach introduces additional complexity and computational considerations.
The meta-model must approximate the likelihood function of the simulation parameter with sufficient accuracy
while remaining computationally tractable. This limitation highlights an important direction for future research:
developing efficient gradient estimation techniques that maintain the computational advantages of pathwise
approaches while accommodating parameters that lack pathwise differentiability in likelihood-free settings.

A.3.4 Theoretical Applicability to Other Stochastic Simulation Models

Our approach can be applied to other stochastic simulation models, such as (s, S) stochastic inventory models,
financial market simulators (Bai et al., 2021), and time-series models with latent variables, such as the stochastic
volatility model (Kim et al., 1998) described in Section 5.2 of Briol et al. (2019). However, as in the case of
G/G/1 queueing models, learning the simulation parameter θ indeed requires careful choice of reference measure
P to ensure differentiability of θ and unbiasedness of the gradient estimate.

Even when the simulation parameter is differentiable, there is no guarantee that the U-statistic gradient estimate
is unbiased if Assumption 2.1 is violated. Consider the stochastic volatility model described in Section 5.2 of
(Briol et al., 2019). While the simulation parameters in this model are differentiable, the transformation from
unobserved latent variables ht to observed data yt involves a non-M-Lipschitz exponential function, violating
Assumption 3 in Assumption 2.1. Nevertheless, exploring the applicability of our approach to such models is of
great interest to us and we plan to address this in our future work.

A.3.5 Validation of Asymptotic Normality Conditions

Besides the differentiability and unbiased gradient issue, the applicability of our confidence set procedure relies
on verifying Assumption 2.3. Despite the fact that the assumptions in Assumption 2.3 are standard assumptions
for asymptotic normality (Briol et al., 2019; Oates et al., 2022), they are technical and unintuitive in nature and
hard to verify. Note that both Briol et al. (2019); Oates et al. (2022) do not verify these conditions in practice.

One case where Assumption 2.3 holds is when X and Z have bounded support (or are almost surely bounded),
Gθ is an (almost everywhere, or P -almost surely) smooth and bounded function, and the kernel k is bounded
(e.g. the Gaussian kernel). In queueing systems, this translates to bounded waiting and arrival times (e.g. from a
U(0, 1) distribution) and using the Gaussian kernel for KOSE. While we do not provide an explicit example where
Assumption 2.3 does not hold, potential violations might occur with unbounded X and Z, when Gθ involves
exponential transforms, or when using unbounded kernels like the Riesz or Polynomial kernels.

A.3.6 Scalability in Parameter Dimension

We acknowledge the limitation of our experiments to small parameter dimensions. This stems from implementation
constraints and the need to ensure differentiability and gradient unbiasedness for each parameter.

Regarding scalability, while concentration and generalization bounds for MMD (Briol et al., 2019) suggest that
convergence speed does not depend on the parameter dimension p, we expect the marginal asymptotic variance
for each parameter to increase with p. However, the computationally intractable nature of the asymptotic
variance-covariance C limits further theoretical insights. Larger p (and data dimension d) will also introduce
challenges in Hessian and Jacobian estimation. Our plug-in estimators might produce confidence sets of incorrect
coverages and the memory needed to compute the Hessian significantly increases.

Besides, with increasing p, the (terminal) SGD estimate θ̂(t)m,n we use to construct confidence set may deviate
from the kernel optimum score estimator θ̂KS

m , similar to the challenges in deep learning optimization where
local minima and saddle points are prevalent. Even at convergence, we may only reach a local optimum, and
uniqueness of the kernel optimum score estimator θ̂KS

m is not guaranteed.
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To address uncertainties from SGD estimation, we can use the plug-in estimate for Cλ (variance-covariance matrix
for kernel simulated score estimator defined in Theorem 2.4) rather than the plug-in estimate for C. By fixing
the sample path w when simulating from Pθ, we can define θ̂KS

m (w) and employ plug-in estimation for Cλ to
construct confidence sets.

A.4 Experimental Details

We provide details on the experimental setup required to produce Tables 2 - 5.

In Table 1, we carefully design the experiment settings to study both stationary and non-stationary queueing
systems. For Experiments 1 and 2, we set the target service rate to 1.2 to ensure system stationarity. Experiment
3 replicates the non-stationary queueing system setup from Bai and Lam (2020), allowing us to compare our
results with established benchmarks. For Experiment 4, we selected a target service rate of 2.5 to maintain
system stationarity while testing in a higher parameter dimension. Please refer to Section A.1.3 for more details
regarding our experiment design.

Unless otherwise specified, all the experiments are run individually on an NVIDIA GeForce RTX 2080 Ti GPU.
For Experiments 1, 2, the waiting time from the target system X and Y (θ) are the averages of 50 Monte Carlo
draws following a burn-in period of 10. For Experiment 4, the waiting time from the target system X and Y (θ)
are the averages of 20 Monte Carlo draws following a burn-in period of 10. The target system in Experiment 3 is
a non-stationary queueing system, and the waiting times are thus the averages of 10 Monte Carlo draws with no
burn-in period.

Kernel Optimum Score Estimation (KOSE) and Confidence Set Estimation For all experiments
with our method, we use PyTorch (Paszke et al., 2019) for kernel optimum score estimation and confidence set
estimation, and the Adam optimizer (Kingma and Ba, 2015) for minimizing the kernel optimum score. The
learning rate at the k-th iteration is η√

1+k
, where η is the initial learning rate. We set η to be 1 throughout our

experiments. We set the stopping criterion at 200 iterations for Experiments 1 and 2, and 800 iterations for
Experiments 3 and 4. We use nc = 5, 000 for confidence set estimation. The Hessian estimator Ĥm,nc

is obtained
with finite difference with interval 0.1 in Experiments 1 and 2, where the parameter space is one-dimensional, and
Ĥm,nc is obtained with the built-in torch.autograd.functional.hessian within Pytorch in Experiments 3 and 4. For
Experiments 2 and 4, where the model is inexact, the optimal simulation parameter θKS

⋆ used to compute MSE
and coverage for all methods except KOSE-Riesz is estimated with a sample of size 5, 000 from the target system
using KOSE-Gaussian with learning rate η = 1 and stopping at iteration 800. The obtained optimal simulation
parameters are displayed in the last column of Tables 2 - 5. For KOSE-Riesz, the optimal simulation parameter
θKS
⋆ used to compute MSE and coverage is estimated with a sample of size 5, 000 from the target system using

KOSE-Riesz with learning rate η = 1 and stopping at iteration 1, 000. We reinforce numerical stability of the
estimated optimal simulation parameters with Polyak-Ruppert averaging (Polyak and Juditsky, 1992) for the last
100 iteration. However, in Experiment 4, for a = 0.2, numerical instability causes θKS

⋆ for KOSE-Gaussian to be
[0.00772042, 1.02951885], which is on the border of the parameter space. To address this issue, we report θKS

⋆ for
KOSE-Riesz instead.

MMD Posterior Bootstrap (NPL-MMD) For the MMD posterior bootstrap method (Dellaporta et al.,
2022), we use the public GitHub repository by Dellaporta et al. (2024) that contains the experiment imple-
mentations. For all experiments with the MMD posterior bootstrap method, the number of points sampled
from the model at each MMD optimization iteration is fixed at 30 (except it is set at 20 for a = 0.4, 0.2 in
Experiment 4 due to memory issues), and the number of bootstrap iterations is fixed at 1, 000. The bandwidth
of the Gaussian kernel used in MMD is picked with the median heuristic (Gretton et al., 2012), and the prior
is the non-informative Dirichlet Process (DP) prior. For Experiments 1 and 2, where the parameter space is
one-dimensional, the 95% credible set is the equal-tailed interval. The 95% joint credible set is constructed as the
union of two 97.5% equal-tailed intervals on each dimension of the parameter space, for Experiments 3 and 4,
from the joint posterior draw.

Accept-Reject ABC with MMD (ABC-AR) For the accept-reject ABC with MMD, we set the tolerance to
be the 1% quantile of the simulated distances, as used in Experiment 1 of Frazier et al. (2020b). The bandwidth
of the Gaussian kernel used in MMD is picked with the median heuristic (Gretton et al., 2012). The prior is the
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Figure 1: Confidence set for KOSE-Riesz, Experiment 4, a = 1.

uniform distribution on the set of parameters that are all within 1 in each dimension from the optimal simulation
parameter, except in Experiment 1, where the optimal simulation parameter θKS

⋆ = 1.2 and the prior is U(0.5, 2.5).
We construct the 95% credible sets in the same way as the MMD posterior bootstrap method. The number of
draws from the prior is 1, 000 for Experiments 1 and 2, and the number of draws from the prior is 9, 000 for
Experiments 3 and 4 to account for the extra dimension of the parameter.

Eligibility Set (ES) For the eligibility set method (Bai and Lam, 2020), we sample 1, 000 candidate parameters
θ ∼ U(0.5, 2.5) in Experiment 1, and from the uniform distribution on the set of parameters that are all within 1
in each dimension from the optimal simulation parameter for Experiments 2 and 4.

A.4.1 Extra Experiments on the Choice of β in KOSE-Riesz

We conduct extra experiments on the choice of β in the Riesz kernel for β = 1.25, 1.5, 1.75, 2, where β = 2
corresponds to a non-strictly proper scoring rule. All experiments, unless otherwise specified, are run with an
NVIDIA TITAN Xp GPU. The results under the setting of Table 2, Experiment 2: R = 1, 000 are in Table 6.
The results under the setting of Table 3, Experiment 4 are in Table 7.

Unlike the Gaussian kernel, there are no existing guidelines for selecting β in the Riesz kernel to the best of our
knowledge. For non-integer values of β, the energy score is not differentiable, necessitating a smoothing of the
energy score computation.

From Table 6, it appears that when β is closer to 1, the produced confidence set has better coverage. This trend
holds in Table 7 except for α = 0.6. Notably, KOSE-Riesz for all the values β = 1.25, 1.5, 1.75, 2 are capable of
producing a valid confidence set for α = 0.4, the most extreme model inexact scenario.

A.4.2 Extra Experiments on the Sensitivity of n

We experiment with the choice of n on the convergence and the coverage of the confidence sets for n =
2, 10, 50, 100, 200. The results under the setting of Table 3, Experiment 4 (p = 2, inexact model), run with an
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Figure 2: Confidence set for KOSE-Riesz, Experiment 4, a = 0.6.

NVIDIA TITAN Xp GPU, are included in Table 8. The results for KOSE-Riesz under the setting of Experiment
1 (p = 1, exact model), run with an NVIDIA 1080Ti GPU, are included in Table 9.

From these tables, it is evident that smaller n leads to greater MSE in estimation and worse confidence set
coverage if the number of iterations is unchanged. However, performance improves as the number of iterations
increases.

A.4.3 Extra Experiments on the Bias in Uncertainty Evaluation

We conduct additional experiments to investigate the bias in uncertainty evaluation. This bias stems from two
primary sources: estimation bias and variance-covariance approximation bias. The estimation bias arises from
the learning procedure, where the distribution of the kernel optimum score estimator (KOSE) deviates from the
asymptotic normal distribution. The variance-covariance approximation bias is introduced during the estimation
of the variance-covariance matrix.

Quantifying the bias in uncertainty evaluation presents challenges. For one-dimensional examples (i.e., p = 1), the
bias is considered small if the mean squared error (MSE) closely approximates the estimated average asymptotic
variance. However, for two-dimensional examples (i.e., p = 2), we lack a definitive measure for this bias. One
approach to assess the magnitude of the bias is to observe whether the asymptotic variance estimate stabilizes.
This stabilization can be inferred by examining the average width and height of the produced confidence sets
(scaled up by a factor of

√
m).

Table 11 presents the results of Experiment 2, including the estimated average asymptotic variance. Table 10
shows the results of KOSE-Riesz under the conditions of Table 3, Experiment 4. All experiments, unless otherwise
specified, are run with an NVIDIA TITAN Xp GPU.

From Table 11, it is evident that the MSE closely approximates the asymptotic variance, particularly for KOSE-
Riesz. Table 10 demonstrates that the width and height (scaled by

√
m) of the confidence set remain stable

across m = 1000, 2000, and 5000, suggesting a stable asymptotic variance estimate.
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Figure 3: Confidence set for KOSE-Gaussian, Experiment 4, a = 1.

A.4.4 Extra Experiments on Contamination Models

We conduct an additional experiment on contamination models under the setting of Experiment 3. We add
white noise drawn from a N(0, 0.01) distribution to (100ϵ)% of the output data from the target system, where
ϵ = 0.01, 0.05, 0.1, 0.2, 0.5. The results are reported in Table 12. From Table 12, we observe that our method is
robust to noise, as expected from the robustness of the MMD and, consequently, the kernel score (Briol et al.,
2019).

A.4.5 Extra Experiments on Stochastic Volatility Model

We conduct additional experiments on the stochastic volatility model (Kim et al., 1998) described in Section 5.2
of Briol et al. (2019). Following the notations of Briol et al. (2019), the model is defined as follows:

Given initial volatility h1 ∼ N(0, σ2/(1− ϕ2), the model follows the following set of equations:

ht = ϕht−1 + ηt, ηt ∼ N(0, σ2)

yt = ϵtκ exp(0.5ht), ϵt ∼ N(0, 1).

where yt is the observed mean corrected return on holding an asset at time t and ht is the hidden log-volatility at
time t. The observed data is {yt}dt=1, and the simulation parameter here is (ϕ, κ, σ).

In our experiment, following Briol et al. (2019), we set the data dimension is d = 30, and we use the following
reparameterization in our algorithm to avoid numerical issues: θ1 = log 1+ϕ

1−ϕ , θ2 = log κ, θ3 = log(σ2). We only
consider the model exactness case i.e. M-closed case as in Briol et al. (2019).

Unless otherwise specified, all the experiments are run individually on an NVIDIA A100 Tensor Core GPU.
For optimization, we use mini-batch stochastic gradient descent here with an initial learning rate of 10−3, a
batch size of 100, and train for 500 epochs. We consider two different settings of optimal simulation parameter:
(ϕ⋆, κ⋆, σ⋆) = (0.98, 0.65, 0.15) and (ϕ⋆, κ⋆, σ⋆) ≈ (0.45, 1.92, 1.08), corresponding to θ⋆ ≈ (2.00,−0.19,−1.65) and
θ⋆ = (0.98, 0.65, 0.15), respectively. The results for the former case are reported in Table 13, and the results for
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Figure 4: Confidence set for KOSE-Gaussian, Experiment 4, a = 0.6.

the latter case are reported in Table 14.

From Tables 13 and 14, it is evident that KOSE-Riesz is able to produce valid confidence sets in both cases
when m ≥ 500, and KOSE-Gaussian is able to produce valid confidence sets for the second case when m ≥ 500.
The underperformance of KOSE-Gaussian in the first case likely stems from optimization challenges, as indicated
by its substantially higher MSE values. These results demonstrate the capability of our method to construct
valid confidence sets for simulation parameters in stochastic volatility models under model exactness.
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Table 4: Experiment 1 results; R is the number of independent runs; m = n.

KOSE-Riesz, R = 1, 000 KOSE-Gaussian, R = 1, 000
m,n MSE Cov. Width T MSE Cov. Width T
10 6.0 · 10−3 0.973 0.45 6 2.0 · 10−1 0.959 0.51 2
50 1.2 · 10−3 0.990 0.20 7 1.5 · 10−3 0.986 0.21 2
100 6.4 · 10−4 0.995 0.14 6 6.0 · 10−4 1.000 0.15 3
500 1.4 · 10−4 0.993 0.06 8 1.4 · 10−4 0.991 0.07 8
1, 000 8.6 · 10−5 0.984 0.05 10 7.4 · 10−5 0.983 0.04 15

ABC-AR, R = 1, 000 NPL-MMD, R = 100 ESet, R = 1, 000
m,n Cov. Width T Cov. Width T Cov. Width T
10 0.885 0.29 3 0.79 0.77 30 1.000 0.42 3
50 0.854 0.12 3 0.80 0.38 30 1.000 0.19 3
100 0.977 0.08 3 0.67 0.27 31 1.000 0.13 3
500 0.990 0.05 3 0.44 0.14 34 0.998 0.05 3
1, 000 0.992 0.03 3 0.43 0.09 67 0.998 0.04 3

Table 5: Experiment 3 results; R is the number of independent runs; m = n; MSE, µ and MSE, λ are the average
mean-squared errors for the service and arrival rates. NR means that the experiment is not run due to excessive
computation time.

KOSE-Riesz, R = 1, 000 KOSE-Gaussian, R = 1, 000
m,n MSE, µ MSE, λ Cov. T MSE, µ MSE, λ Cov. T
10 9.0 · 10−3 1.09 1 3 1.1 · 10−2 1.6 · 10−1 0.999 2
50 2.5 · 10−3 2.5 · 10−3 1 3 1.0 · 10−3 1.5 · 10−2 1.000 3
100 2.1 · 10−4 2.0 · 10−2 1 3 1.9 · 10−3 4.9 · 10−3 1.000 4
500 3.4 · 10−3 6.5 · 10−3 1 2 7.1 · 10−4 1.1 · 10−2 1.000 15
1, 000 2.0 · 10−4 6.0 · 10−4 1 3 4.1 · 10−4 9.1 · 10−5 1.000 36

ABC-AR, R = 100 NPL-MMD, R = 100
m,n Cov. Width, µ, λ T Cov. Width, µ, λ T
10 0 0.62, 0.59 66 0.88 1.06, 12.8 30
50 NR NR NR 0.86 0.62, 7.07 32
100 1 0.19, 0.65 66 0.81 0.50, 5.86 38
500 NR NR NR 0.73 0.30, 3.29 69
1, 000 NR NR NR 0.57 0.22, 2.41 161

Table 6: Under the setting of Table 2, Experiment 2: R = 1, 000. Top: β = 1.25 (left entry), β = 1.5 (right entry).
Bottom: β = 1.75 (left entry), β = 2 (right entry). Asymp.Var. is the estimated average asymptotic variance.
NR means that the experiment is not run due to excessive computation time.

m,n a MSE Cov. Width Asymp.Var. T
500, 500 1.0 3.0× 10−4, 1.2× 10−4 0.683, 0.729 0.04, 0.02 1.1× 10−4, 4.1× 10−5 8, 8
500, 500 0.8 1.5× 10−4, 4.2× 10−4 0.979, 0.638 0.06, 0.04 2.2× 10−4, 1.3× 10−4 8, 8
500, 500 0.6 2.3× 10−4, 3.4× 10−4 0.990, 0.961 0.09, 0.08 4.9× 10−4, 4.4× 10−4 8, 8
500, 500 0.4 1.4× 10−3, 9.9× 10−4 0.999, 1.000 0.18, 0.19 2.1× 10−3, 2.3× 10−3 8, 8
500, 500 0.2 NR, NR NR, NR NR, NR NR, NR NR, NR
500, 500 1.0 1.3× 10−4, 2.6× 10−4 0.533, 0.154 0.02, 0.01 1.7× 10−5, 6.6× 10−6 8, 8
500, 500 0.8 3.3× 10−4, 2.3× 10−4 0.564, 0.527 0.03, 0.02 6.3× 10−5, 3.5× 10−5 8, 8
500, 500 0.6 2.5× 10−4, 2.0× 10−4 0.966, 0.955 0.07, 0.06 3.3× 10−4, 2.6× 10−4 8, 8
500, 500 0.4 1.7× 10−3, 3.3× 10−4 1.000, 1.000 0.21, 0.21 2.8× 10−3, 2.9× 10−3 9, 9
500, 500 0.2 1.7× 10−2, 4.2× 10−3 1.000, 1.000 0.71, 1.12 3.4× 10−2, 8.8× 10−2 8, 9
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Table 7: Under the setting of Table 3, Experiment 4. R = 1, 000. Top: β = 1.25 (left entry), β = 1.5 (right entry).
Bottom: β = 1.75 (left entry), β = 2 (right entry). NR means that the experiment is not run due to excessive
computation time.

m,n a MSE, µ MSE, λ Cov. T
1000, 1000 1.0 1.8× 10−2, 1.1× 10−2 2.4× 10−2, 7.6× 10−3 1, 1 8.2, 8.3
1000, 1000 0.8 6.3× 10−3, 6.1× 10−3 1.4× 10−3, 1.7× 10−3 1, 1 8.1, 8.5
1000, 1000 0.6 3.98× 10−1, 4.85× 10−1 1.55× 10−1, 2.12× 10−1 0, 0 7.5, 8.4
1000, 1000 0.4 8.7× 10−4, 7.5× 10−4 9.6× 10−3, 2.1× 10−3 1, 1 7.5, 8.5
1000, 1000 0.2 3.0× 10−3, NR 2.3× 10−3, NR 1, NR 7.7, NR
1000, 1000 1.0 4.87× 10−1, 6.91 5.00× 10−1, 28.88 0, 0 8.4, 8.3
1000, 1000 0.8 1.7× 10−2, 2.8× 10−3 1.0× 10−2, 2.1× 10−4 1, 1 8.5, 8.1
1000, 1000 0.6 3.28× 10−1, 4.9× 10−4 1.36× 10−1, 1.2× 10−2 0, 1 8.4, 8.1
1000, 1000 0.4 3.7× 10−4, 9.0× 10−3 1.4× 10−3, 1.0× 10−2 1, 1 8.4, 8.1
1000, 1000 0.2 NR, 6.9× 10−4 NR, 3.7× 10−3 NR, 0 NR, 8.3

Table 8: Under the setting of Table 3, Experiment 4. R = 1, 000. Sensitivity to n for KOSE-Riesz (left entry)
and KOSE-Gaussian (right entry). Iterations is the number of SGD iterations.

n,m a MSE, µ MSE, λ Cov. T Iterations
2, 1000 0.8 8.91, 10.29 9.92, 10.95 0, 0 7.7, 25.5 800
10, 1000 0.8 4.09, 3.63 3.22, 2.22 0, 0 7.7, 25.3 800
50, 1000 0.8 1.21, 0.57 0.82, 0.34 0, 0 7.6, 25.2 800
100, 1000 0.8 0.48, 0.16 0.37, 0.13 0, 0 7.4, 25.1 800
500, 1000 0.8 0.07, 0.04 0.03, 0.01 0, 1 7.9, 25.3 800
2, 1000 0.8 9.71, 6.33 8.40, 4.89 0, 0 18.0, 36.5 2500
10, 1000 0.8 1.82, 1.63 1.25, 0.93 0, 0 14.9, 33.3 2000
50, 1, 000 0.8 0.44, 0.12 0.29, 0.07 0, 0 12.4, 30.2 1500
100, 1000 0.8 0.35, 0.12 0.18, 0.06 0, 1 9.2, 26.9 1000
500, 1000 0.8 0.02, 0.02 0.01, 0.01 0, 1 9.3, 26.8 1000

Table 9: KOSE-Riesz under the setting of Experiment 1. R = 1, 000. Asymp.Var. is the estimated average
asymptotic variance.

KOSE-Riesz, R = 1, 000
n,m a MSE Cov. Width Asymp.Var. T
2, 500 1 0.015 0.289 0.26 0.185 5
10, 500 1 0.003 0.597 0.34 0.035 5
50, 500 1 0.001 0.688 0.07 0.000 5
100, 500 1 0.001 0.896 0.07 0.000 5
200, 500 1 0.000 0.976 0.07 0.000 5
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Table 10: KOSE-Riesz under the setting of Table 3, Experiment 4; R = 100. Width and Height are the average
width and height of the estimated confidence sets, respectively.

KOSE-Riesz, R = 100
n,m a Cov. Width Height T

1000, 1000 1.0 1.00 0.05 2.61 7.9
1000, 1000 0.8 0.00 0.05 2.71 7.9
1000, 1000 0.6 0.00 0.03 1.28 8.0
1000, 1000 0.4 0.00 0.01 1.25 8.1
1000, 1000 0.2 0.00 0.00 1.04 8.2
1000, 2000 1.0 1.00 0.03 1.56 11.4
1000, 2000 0.8 0.00 0.04 2.39 11.3
1000, 2000 0.6 0.00 0.03 1.37 10.9
1000, 2000 0.4 0.00 0.01 1.29 10.7
1000, 2000 0.2 0.00 0.00 1.13 10.7
1000, 5000 1.0 0.99 0.04 1.83 20.4
1000, 5000 0.8 1.00 0.05 2.65 20.2
1000, 5000 0.6 0.00 0.02 1.27 19.7
1000, 5000 0.4 0.00 0.01 1.27 19.6
1000, 5000 0.2 0.00 0.00 1.08 19.5

Table 11: Experiment 2 results; R = 1, 000. Asymp.Var. is the estimated average asymptotic variance.

KOSE-Riesz, R = 1, 000
a MSE Cov. Width Asymp.Var. T θKS

⋆

1 4.0 · 10−4 0.920 0.07 3.1 · 10−4 3 1.2
0.8 1.6 · 10−4 0.996 0.07 3.6 · 10−4 3 1.5
0.6 2.6 · 10−4 0.999 0.10 6.7 · 10−4 3 1.9
0.4 6.7 · 10−4 0.999 0.15 1.5 · 10−3 3 2.5
0.2 3.0 · 10−3 1.000 0.34 8.0 · 10−3 3 4.1

KOSE-Gaussian, R = 1, 000
a MSE Cov. Width Asymp.Var. T θKS

⋆

1 1.8 · 10−4 0.990 0.06 2.8 · 10−4 4 1.2
0.8 7.4 · 10−4 0.842 0.08 4.0 · 10−4 4 1.5
0.6 8.0 · 10−7 0.942 0.10 6.6 · 10−4 3 1.9
0.4 1.0 · 10−3 0.997 0.17 1.8 · 10−3 4 2.5
0.2 1.9 · 10−2 0.833 0.37 9.8 · 10−3 4 4.1

Table 12: Contamination Models under the setting of Experiment 3; R = 100; ϵ is the noise level; m = n = 1, 000.
MSE, µ and MSE, λ are the average mean-squared errors for the service and arrival rates.

KOSE-Riesz, R = 100 KOSE-Gaussian, R = 100
ϵ MSE, µ MSE, λ MSE, µ MSE, λ

0.01 0.190 0.093 0.071 0.024
0.05 0.222 0.100 0.064 0.023
0.1 0.221 0.099 0.332 0.118
0.2 0.227 0.102 0.270 0.135
0.5 0.244 0.111 0.058 0.029
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Table 13: Stochastic volatility model with (ϕ⋆, κ⋆, σ⋆) = (0.98, 0.65, 0.15), θ⋆ ≈ (2.00,−0.19,−1.65); R is the
number of independent runs; n = 100; MSE, ϕ, MSE, κ, and MSE, σ are the average mean-squared errors for ϕ,
κ and σ, respectively.

KOSE-Riesz, R = 100 KOSE-Gaussian, R = 100
m MSE, ϕ MSE, κ MSE, σ Cov. T MSE, ϕ MSE, κ MSE, σ Cov. T
10 4.5 · 10−3 7.1 · 10−3 2.0 · 10−3 0.43 4 4.8 · 10−3 5.6 · 10−3 2.4 · 10−3 0.30 4
50 2.6 · 10−3 1.6 · 10−3 1.2 · 10−3 0.17 4 4.3 · 10−3 1.6 · 10−3 2.2 · 10−3 0.06 4
100 2.3 · 10−3 1.2 · 10−3 1.0 · 10−3 0.03 5 4.2 · 10−3 1.2 · 10−3 2.1 · 10−3 0.00 5
500 3.1 · 10−5 1.1 · 10−4 4.6 · 10−4 0.99 23 4.4 · 10−4 4.3 · 10−4 3.0 · 10−4 0.00 28
1, 000 2.7 · 10−5 7.4 · 10−5 4.7 · 10−4 0.96 45 2.0 · 10−4 2.0 · 10−4 2.4 · 10−3 0.00 51

Table 14: Stochastic volatility model with (ϕ⋆, κ⋆, σ⋆) ≈ (0.45, 1.92, 1.08), θ⋆ = (0.98, 0.65, 0.15); R is the number
of independent runs; n = 100; MSE, ϕ, MSE, κ, and MSE, σ are the average mean-squared errors for ϕ, κ and σ,
respectively.

KOSE-Riesz, R = 100 KOSE-Gaussian, R = 100
m MSE, ϕ MSE, κ MSE, σ Cov. T MSE, ϕ MSE, κ MSE, σ Cov. T
10 2.1 · 10−3 5.8 · 10−2 8.0 · 10−3 0.51 4 1.6 · 10−3 4.7 · 10−2 5.0 · 10−3 0.50 4
50 2.7 · 10−3 1.2 · 10−2 7.3 · 10−3 0.90 4 1.9 · 10−3 9.8 · 10−3 4.1 · 10−3 0.89 4
100 3.0 · 10−3 6.3 · 10−3 7.4 · 10−3 0.96 5 2.0 · 10−3 5.1 · 10−3 4.1 · 10−3 0.96 5
500 3.0 · 10−3 3.5 · 10−3 6.7 · 10−3 0.99 23 1.9 · 10−3 2.4 · 10−3 3.8 · 10−3 0.99 23
1, 000 3.1 · 10−3 2.5 · 10−3 6.0 · 10−3 0.96 45 1.6 · 10−3 2.0 · 10−4 3.5 · 10−3 0.97 46
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